
Provenance, Incremental Evaluation, and
Debugging in Datalog

David Wei Zhao

A thesis submitted to fulfil requirements for the degree of

Doctor of Philosophy

School of Computer Science

Faculty of Engineering

The University of Sydney

March 2022

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own work.
This thesis has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work and that all
the assistance received in preparing this thesis and sources have been acknowledged.

David Zhao

Publication List

During my candidature, I contributed to the following publications:

• [1] Hu, X., Karp, J., Zhao, D., Zreika, A., Wu, X., and Scholz, B. (2021, October).
The Choice Construct in the Soufflé Language. In Asian Symposium on Programming
Languages and Systems (pp. 163-181). Springer, Cham. doi:10.1007/978-3-030-89051-
3_10

• [2] Zhao, D., Subotic, P., Raghothaman, M., and Scholz, B. (2021, September). Towards
Elastic Incrementalization for Datalog. In 23rd International Symposium on Principles and
Practice of Declarative Programming (PPDP) (pp. 1-16). doi:10.1145/3479394.3479415

• [3] Hu, X., Zhao, D., Jordan, H. and Scholz, B. (2021, June). An efficient interpreter for
Datalog by de-specializing relations. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation (PLDI) (pp.
681-695). doi:10.1145/3410297

• [4] Zhao, D., Subotić, P. and Scholz, B. (2020). Debugging Large-scale Datalog: A Scalable
Provenance Evaluation Strategy. In ACM Transactions on Programming Languages and
Systems (TOPLAS), 42(2), (pp. 1-35). doi:10.1145/3379446

• [5] Jordan, H., Subotić, P., Zhao, D. and Scholz, B. (2020). Specializing parallel data struc-
tures for Datalog. In Concurrency and Computation: Practice and Experience, (p.e5643).
doi:10.1002/cpe.5643

• [6] Raghothaman, M., Mendelson, J., Zhao, D., Naik, M. and Scholz, B. (2019). Provenance-
guided synthesis of Datalog programs. In Proceedings of the ACM on Programming Lan-
guages, 4 (POPL), (pp. 1-27). doi:10.1145/3371130

• [7] Nappa, P., Zhao, D., Subotić, P. and Scholz, B. (2019, September). Fast Paral-
lel Equivalence Relations in a Datalog Compiler. In 2019 28th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT) (pp. 82-96). IEEE.
doi:10.1109/PACT.2019.00015

• [8] Jordan, H., Subotić, P., Zhao, D. and Scholz, B. (2019, February). A specialized B-
tree for concurrent datalog evaluation. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP’19). ACM, New York, NY,
USA. doi:10.1145/3293883.3295719

• [9] Jordan, H., Subotić, P., Zhao, D. and Scholz, B. (2019, February). Brie: A Special-
ized Trie for Concurrent Datalog. In Proceedings of the 10th International Workshop on
Programming Models and Applications for Multicores and Manycores (pp. 31-40). ACM.
doi:10.1145/3303084.3309490

https://doi.org/10.1007/978-3-030-89051-3_10
https://doi.org/10.1007/978-3-030-89051-3_10
https://doi.org/10.1145/3479394.3479415
https://doi.org/10.1145/3410297
https://doi.org/10.1145/3379446
https://doi.org/10.1002/cpe.5643
https://doi.org/10.1145/3371130
https://doi.org/10.1109/PACT.2019.00015
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1145/3303084.3309490

Authorship Attribution

This thesis contains the following material submitted or accepted for publication:

• Chapter 4 is published as [4]. I designed the encoding and algorithms with the co-authors.
I implemented the approach and performed the experimental evaluation.

• Chapter 5 is published as [2]. I developed the encoding and algorithms, implemented the
approach, and performed the experimental evaluation.

• Chapter 6 is submitted for publication as [10]. I designed and implemented the approach,
and performed the experimental evaluation.

In addition to the statements above, in cases where I am not the corresponding author
of a published item, permission to include the published material has been granted by the
corresponding author.

David Zhao

As supervisor for the candidature upon which this thesis is based, I can confirm that the
authorship attribution statements above are correct.

Prof. Bernhard Scholz

Acknowledgements

First of all, a tremendous thanks to my wonderful supervisor, Bernhard. These four years of
research and progress have only been possible thanks to the tireless patience and guidance of
Bernhard. The journey hasn’t always been easy, but I am grateful for Bernhard’s groundedness
and steady encouragement. His connections and understanding of the wider world of research
have been invaluable, and ultimately led to higher quality publications and research.

I’d also like to thank my core contributors, Paul and Mukund, who have also been with me
throughout this PhD journey. Their contributions, which range from technical to experimental
to writing to general support, have been a massive help, and the publications in this thesis are
only possible thanks to them. I’d also like to thank my other contributors: Mayur and the group
at UPenn, Xiaowen, Abdul, Sam, Herbert, Patrick, among others.

To the rest of the programming languages group, thank you for being there with support
and encouragement, and for just being a fun group to hang out with. I will always cherish these
friendships that I’ve made.

Last, but certainly not least, I’d like to thank my wonderful family and friends and my
girlfriend for all of their encouragement and support over the last four years.

Abstract

The Datalog programming language has recently found increasing traction in research and in-
dustry. Driven by its clean declarative semantics, along with its conciseness and ease of use,
Datalog has been adopted for a wide range of important applications, such as program analysis,
graph problems, and networking. To enable this adoption, modern Datalog engines have im-
plemented advanced language features and high-performance evaluation of Datalog programs.
Unfortunately, critical infrastructure and tooling to support Datalog users and developers are
still missing. For example, there are only limited tools addressing the crucial debugging problem,
where developers can spend up to 30% of their time finding and fixing bugs.

This thesis addresses Datalog’s tooling gaps, with the ultimate goal of improving the produc-
tivity of Datalog programmers. The first contribution is centered around the critical problem
of debugging: we develop a new debugging approach that explains the execution steps taken
to produce a faulty output. Crucially, our debugging method can be applied for large-scale
applications without substantially sacrificing performance. The second contribution addresses
the problem of incremental evaluation, which is necessary when program inputs change slightly,
and results need to be recomputed. Incremental evaluation allows this recomputation to happen
more efficiently, without discarding the previous results and recomputing from scratch. Finally,
the last contribution provides a new incremental debugging approach that identifies the root
causes of faulty outputs that occur after an incremental evaluation. Incremental debugging
focuses on the relationship between input and output and can provide debugging suggestions
to amend the inputs so that faults no longer occur. These techniques, in combination, form a
corpus of critical infrastructure and tooling developments for Datalog, allowing developers and
users to use Datalog more productively.

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Thesis Structure . 3

2 Datalog 5

2.1 Logic and Datalog . 6

2.2 Syntax of Datalog . 7

2.3 Running Example . 10

2.3.1 Pointer Analysis in Datalog . 12

2.4 Semantics and Evaluation of Datalog . 12

2.4.1 Model-theoretic semantics . 13

2.4.2 Bottom-Up Evaluation . 13

2.4.3 Top-Down Evaluation . 16

2.5 Datalog Engines . 18

2.5.1 Soufflé . 18

3 Related Work 23

3.1 Provenance . 23

3.1.1 Classification of Provenance . 23

3.1.2 Provenance in Datalog . 25

3.2 Incremental Evaluation . 27

3.2.1 Datalog . 27

3.2.2 Differential Dataflow . 28

3.2.3 Databases . 29

3.3 Debugging and Repair . 30

3.3.1 Delta Debugging . 31

3.3.2 Logic Programming Repair . 32

3.3.3 Synthesis . 32

4 Large-Scale Provenance in Datalog 35
4.1 The Datalog Debugging Problem . 35
4.2 Motivation and Problem Statement . 37

4.2.1 Use Case: Program Analysis . 37
4.2.2 Proof Trees and Problem Statement . 40

4.3 A New Provenance Method . 41
4.3.1 Standard Bottom-Up Evaluation . 43
4.3.2 Provenance Evaluation Strategy . 43
4.3.3 Proof Tree Construction by Provenance Queries 50
4.3.4 Provenance for Non-Existence of Tuples via User Interaction 52
4.3.5 Alternative Proof Tree Shapes . 54

4.4 Implementation in Soufflé . 55
4.4.1 Implementing a Proof Tree Construction User Interface 57

4.5 Experiments . 59
4.5.1 Performance of the Provenance Evaluation Strategy 60
4.5.2 Proof Tree Construction . 64
4.5.3 Characteristics of Proof Trees . 65

4.6 Chapter Summary . 65

5 Elastic Incremental Evaluation for Datalog 67
5.1 Incremental Evaluation . 67
5.2 Background . 70

5.2.1 Semi-Naïve Evaluation . 70
5.2.2 Incremental Datalog Evaluation . 71

5.3 Current Incremental Evaluations . 72
5.3.1 Bootstrap Algorithm . 73
5.3.2 Incremental Update Algorithm . 75

5.4 Elastic Incremental Evaluation . 77
5.4.1 Bootstrap Algorithm . 78
5.4.2 Incremental Update Algorithm . 79
5.4.3 Stratified Negation and Constraints . 85

5.5 Implementation in Soufflé . 87
5.5.1 Core Implementation . 87
5.5.2 Optimizations . 88

5.6 Experimental Evaluation . 90
5.6.1 Single Strategy Incremental Evaluation . 91
5.6.2 Elastic Incremental Evaluation . 93

5.7 Chapter Summary . 95

6 Input Debugging with Incremental Provenance 97
6.1 Fault Localization and Input Debugging . 97
6.2 Motivating Example . 99

6.2.1 Delta Debugging . 100
6.3 Incremental Provenance . 101
6.4 Incremental Input Debugging . 103

6.4.1 System Overview . 104
6.4.2 Fault Localization . 105
6.4.3 Input Debugging Suggestion . 106
6.4.4 Extensions . 108
6.4.5 Full Algorithm . 110
6.4.6 Correctness and Optimality . 111

6.5 Experiments . 112
6.5.1 Experimental Setup . 114
6.5.2 Performance . 114
6.5.3 Quality . 115
6.5.4 Overall Scalability . 115

6.6 Chapter Summary . 115

7 Conclusion 117
7.1 Future Work . 118

Bibliography 119

List of Figures

2.2 Program Analysis Datalog Setup . 11
2.3 Points-to Input Diagram . 12
2.4 Bottom-up evaluation of the vpt stratum of the running example (Figure 2.2c),

where E is the input instance . 14
2.5 Standard vs. Incremental Evaluation . 16
2.6 Example top-down evaluation for our running example (Figure 2.2c) showing

vpt(userSession, L3) holds . 17
2.7 Flow chart of Soufflé . 19
2.8 RAM code for rule r2 . 19

4.1 Full proof tree for alias(userSession,ins) . 38
4.2 Infinitely many derivations for vpt(ins,L3), resulting from the circular assign-

ment in line 11 and a newly inserted line ins = userSession; in the input pro-
gram . 38

4.3 Interactive exploration of fragments of a proof tree for t 39
4.4 Exploring the proof of alias(userSession,admin) to find the erroneous rule r2 40
4.5 One level of a proof tree of minimal height for t 41
4.6 Synthesized Proof Tree Generator system . 42
4.7 Connecting a tuple to a proof tree via a height annotation 44
4.8 IDB relation vpt in each iteration of the fixpoint computation for the example

Datalog program . 46
4.9 Example Datalog program demonstrating the upper bound is tight. The label

on each edge (x, y) denotes the height annotation h (edge(x,y)). Although edge

is an input relation for this stratum, the height annotations may be non-zero as
a result of some pre-processing stage (see Figure 4.8 for an example of how this
may occur). 49

4.11 Provenance version of RAM loop nest . 56
4.12 Explaining the tuple alias(userSession,ins) 58
4.13 Explaining the non-existence of the tuple vpt(userSession,L4) 58
4.14 Subroutine for example program . 59
4.16 Proof Tree Construction and Statistics . 65

5.1 Batch-mode vs. Incremental Evaluation . 68
5.2 Elastic Incremental Evaluation . 69

5.3 Incremental update size vs. runtime. The horizontal line in each figure is the
runtime of non-incremental Soufflé on the respective benchmark, and the upwards
arrows indicate timeouts. 91

5.4 Runtimes for an elastic workload. For each benchmark, the first epoch is an initial
evaluation, followed by 6 epochs of small updates, then one large update, then 4
epochs of small updates, then one large update. 94

6.1 A scenario where an incremental update results in faults in the output 98
6.2 The proof tree for alias(userSession,sec). The top two rows have shortened

variable names. (+) denotes tuples that are inserted as a result of the incremental
update, and red denotes tuples that were not affected by the incremental update. 102

6.3 Incremental Debugging System . 105
6.4 A fault localization is a subset of input changes such that the faults are still

reproduced . 106
6.5 An input debugging suggestion is a subset of input changes such that the remain-

der of the input changes no longer produce the faults 106

List of Tables

4.1 Statistics for Doop benchmarks . 60
4.2 Runtime and memory usage overheads for Soufflé with and without proof anno-

tations with 8 threads . 61
4.3 Statistics for Ddisasm benchmarks . 62
4.4 Runtime and memory usage overheads for Ddisasm on SPEC benchmarks with

and without provenance annotations with 8 threads 63
4.5 Runtime and memory usage overheads for our provenance approach compared to

top-k [112], using Doop with the DaCapo benchmarks. 64

5.1 Benchmark Statistics . 91
5.2 The minimum, median, maximum impact for updates of each size; the impact is

the overall number of IDB tuples inserted or deleted, K denotes thousands, M
denotes millions . 92

5.3 Memory usage for each engine, showing the minimum, average, and maximum
memory usage across all of the update sets . 95

6.1 Results for debugging size and runtime, our fault localization/debugging tech-
nique compared to delta debugging . 113

Chapter 1

Introduction

The Datalog programming language has had a tumultuous history [11, 12, 13]. Having been
introduced in the 1980s, Datalog was originally designed as a database query language, allowing
for more expressive queries such as those including recursion. However, Datalog fell out of favor
in the following years, with database practitioners preferring the verbosity of SQL [14] and not
needing recursion. In recent decades, Datalog has seen a resurgence in popularity, driven by a
shift towards its use as a programming language.

During this resurgence, Datalog has found several important use cases, ranging from semantic
web searching [15] to networking [16, 17, 18, 19] to program analysis [20, 21, 22], among others. In
comparison to database querying, these new use cases are characterized by increasingly complex
recursive queries and data representations. Furthermore, these complex applications have also
driven Datalog language development, including more sophisticated features such as complex
data types, user-defined functors, components/modules, and data structures [23, 24].

A Datalog program is specified as a set of logical rules. These rules define what the intended
output should look like, in contrast to other paradigms, which specify step-by-step how to
compute a program. One commonly cited example of Datalog, which showcases its succinctness,
is transitive closure. This program computes all possible paths in a graph and is represented in
just two lines of code:

1 path(X,Y) :- edge(X,Y).
2 path(X,Z) :- edge(X,Y), path(Y,Z).

This transitive closure program contains two relations: edge and path. The first rule states
that if there is an edge (X,Y), then there is also a path (X,Y). The second rule expresses
transitivity, stating that if there is an edge (X,Y) and a path (Y,Z), then there is also a path
(X,Z). In contrast to the elegance of these two Datalog rules, other programming paradigms such
as imperative or functional languages may require tens or even hundreds of lines to implement
an algorithm that traverses the graph to discover its transitive closure.

In the early history of Datalog, research mainly focused on optimizations and efficient eval-
uation of Datalog programs [12]. For early database querying purposes, the ability to efficiently
evaluate a Datalog program was sufficient for most applications. In these use cases, advanced
infrastructure and tooling were not essential, given that most database queries written in Dat-

2 Chapter 1: Introduction

alog were only a handful of lines of code. However, the rise of modern Datalog applications
characterized by increasingly complex programs containing hundreds of relations and rules [20,
22, 25] has necessitated the development of improved tools and infrastructure to support Datalog
programmers and increase productivity.

While the clean semantics and high performance of the Datalog language are huge benefits
for improving programmer productivity, tool support and infrastructure for Datalog have unfor-
tunately been lacking. For example, consider the important problem of debugging. Studies have
shown that programmers can spend up to 30% of their development time debugging [26], thus
forming an essential consideration for programmer productivity. Therefore, over the decades of
support for traditional imperative languages, tools such as debuggers and IDEs [27, 28] have
been developed and refined to aid the debugging process. Nowadays, many such tools exist
for almost all common imperative programming languages, and these tools are integrated into
user-friendly development environments.

Meanwhile, Datalog and other logic programming languages have not seen the same popular-
ity and support. Current approaches for debugging logic programs are often clunky [29], requir-
ing users to inspect confusing execution traces manually. Moreover, the decades of research in
developing user-friendly debugging techniques for imperative languages cannot be directly trans-
lated to logic languages due to the different semantics and execution models. However, despite
these challenges, the clean declarative semantics of logic programming provides the potential
for more usable and expressive debugging tools and even automated techniques to suggest code
fixes.

Furthermore, the logic programming paradigm offers even more opportunities for automated
tooling compared to traditional paradigms. For instance, one important technique is incremen-
tal evaluation, which allows a program to efficiently update its results given a small change to
the input. Real-world tasks are increasingly taking advantage of this incrementality, such as for
graph analyses [30], database querying [31], debugging [32], among many others. The declar-
ative semantics of Datalog lends itself to allowing automatic incrementalization of a program,
providing orders of magnitude speedups for updating computations while maintaining the same
ease of succinct logic programming for users. In contrast, automatically incrementalizing im-
perative or functional programs can be challenging or impossible [33], and programs written in
these languages must be manually adapted to implement complex incremental algorithms.

In this thesis, we aim to answer the following questions to enhance the tooling and infras-
tructure support for Datalog.

1. How can we debug large-scale Datalog programs? The Datalog language and
semantics can inherently record what happened during execution in the form of proof
trees [34] which describe the computations performed during evaluation. However, these
proof trees are discarded during Datalog evaluation in the name of performance. There-
fore, how can we provide an encoding with minimal overhead, which allows for efficiently
reconstructing trees for debugging? Furthermore, can we provide a utility for users to
explore these proof trees in a usable way?

2. How can we effectively incrementalize Datalog programs? Incremental evaluation

1.1 Thesis Structure 3

is essential for applications where inputs may change slightly between program runs (espe-
cially in debugging scenarios). While existing techniques for Datalog and similar languages
can perform incremental evaluation where input updates are small, can we efficiently in-
crementalize Datalog programs for both large and small updates?

3. How can we provide automated debugging utilities? While proof trees are an
effective vehicle for Datalog programmers to find explanations for tuples, they may be
difficult to understand for users who are not familiar with the Datalog rules. Furthermore,
under an incremental evaluation setting, faults may appear between updates. For Datalog
users using incremental evaluation, can we devise a debugging framework that finds the
input changes which cause faults? Furthermore, can we provide debugging suggestions
such that faults can be fixed?

1.1 Thesis Structure

This thesis presents our contributions towards developing improved logic programming infras-
tructure to improve utility, user-friendliness, and ultimately the productivity of logic program-
mers. While designing and developing these systems, we find novel extensions to standard
Datalog evaluation strategies, which we integrate into a production Datalog engine called Souf-
flé [35].

We begin our presentation by describing the well-established Datalog language. Chapter 2
provides a background of the history of Datalog before detailing the syntax and semantics of
the language. Along the way, we motivate our study with a running example, describing the use
of Datalog for program analysis. Finally, we briefly describe modern Datalog engines and the
technical innovations that have allowed them to achieve high performance and strong scalability.

Chapter 3 discusses the major developments in the research areas spanning logic program-
ming provenance, incremental evaluation, and automated fault localization and repair.

In Chapter 4, we present our novel approach for debugging large-scale Datalog. For this
purpose, we present a provenance framework, which traces the origins and history of data. In
the context of debugging Datalog programs, provenance in the form of proof trees can be used
to discover the causes of faults that may appear as a result of bugs. To design the provenance
system, we develop a novel encoding that uses two phases. In the first phase, we instrument
the standard Datalog evaluation with proof annotations with minimal overhead, with a second
phase to construct proof trees using these proof annotations. We also provide a user-friendly
utility for exploring the trees in an on-demand fashion.

In Chapter 5, we describe our approach for automatic incremental evaluation in Datalog,
intending to enable effective processing of incremental updates that are both small and large.
We first describe the current state-of-the-art incremental evaluation techniques, then detail our
adaptations to allow an elastic approach for incremental evaluation.

Using provenance and incremental evaluation, Chapter 6 describes our approach for in-
cremental debugging for Datalog. The premise of incremental debugging is when a fault is
introduced due to an incremental update. Our delta debugging approach uses a combination of

4 Chapter 1: Introduction

incremental evaluation and provenance, along with integer linear programming techniques, to
automatically localize or even provide debugging suggestions for the causes of these faults.

Chapter 2

Datalog

Datalog is a declarative programming language based on the logic programming paradigm. Sur-
vey [11] provides a brief history of Datalog, from its origins to its gradual decline and resurgence.
Originally, Datalog derived from the more expressive Prolog [36], with similar syntax and se-
mantics but a different computational model. Datalog is a strict subset of Prolog, removing
some features such as the non-declarative cut operator. As a result, Datalog has cleaner and
simpler semantics while avoiding such problems as non-termination that plagued Prolog in its
early days. At the same time, Datalog was of interest in the database community, being adopted
as a query language that supports recursion, which was missing from the relational algebra-based
languages in use at the time.

However, the popularity of Datalog declined in the late 1990s and early 2000s, primarily due
to a lack of a ‘killer application,’ with recursion being less necessary than initially thought and
more traditional languages such as SQL being favored in the database community. Furthermore,
practical limitations such as memory space and the need for user interfaces and interactivity
led to a rise in popularity for object-oriented languages, overshadowing the once-popular logic
programming paradigm.

In recent years since the mid-2000s, Datalog has seen a revival of interest in various modern
applications. For example, we present a non-exhaustive list of Datalog applications in use today:

• Semantic web [15] - a project which aims to classify webpages using logical statements,
allowing for more relevant search results and recommendation systems

• Program analysis [20, 21, 22] - automatically detecting bugs or vulnerabilities in source
code, using techniques such as abstract interpretation

• Declarative networking [16, 17, 18, 19] - describing networking algorithms to check prop-
erties such as connectivity, security, etc.

• Graph databases [37, 30] - expressing graph queries such as connectivity, reachability, etc.

The uptake of Datalog in these application areas and others has been driven by the suc-
cinctness of Datalog and the improving performance of modern engines. Traditionally, these
applications have been developed in imperative or object-oriented languages, which are often
less modular, less concise, and harder to optimize and maintain than Datalog.

6 Chapter 2: Datalog

The current state of Datalog is that it is commercially used in several specific application
areas requiring complex recursive reasoning, with support for high performance and modern
language features in current Datalog engines. While Datalog may not be a household name in
programming languages, it is an essential tool in these domains.

2.1 Logic and Datalog

The Datalog programming language is a subset of first-order logic, a formalism of mathematical
logic [34] that has a long and rich history dating back to early philosophers, such as Chrysippus
in the 3rd century BC. Formal logic is a fundamental branch of mathematics that deals with
mathematical concepts expressed using formal logical systems. Two important systems of logic
are propositional logic and first-order logic. First, propositional logic allows the formal treat-
ment of statements including components like and, not, and if. Then, first-order logic extends
propositional logic to model modifiers like exists, every, and only.

Propositional Logic. Propositional logic is a formal language in which we can express declar-
ative statements. For example, the sentence “if it is raining, or if it is nighttime, then we cannot
play tennis” is a declarative statement that can be true or false. In propositional logic, we
can define symbols (or propositions), for example r meaning “it is raining,” n meaning “it is
nighttime,” and t meaning “we can play tennis.” Then, the above sentence could be written as

r ∨ n =⇒ ¬t

meaning that if r or n is true, then t is false, which gives the same meaning as the above English
sentence.

Of course, we would also like to draw a conclusion from a given set of logical statements. In
the above example, if we know that it is raining (i.e., that r is true), then we can conclude that
we cannot play tennis (i.e., that t is false). Alternatively, if we are playing tennis (i.e., that t is
true), then it logically follows that it is both not raining (i.e., that r is false) and that it is not
nighttime (i.e., that n is false). To this end, natural deduction [38] is a system of proof rules
which allow us to manipulate logical formulas to draw conclusions. For example, one proof rule
in the natural deduction system is:

ϕ ϕ =⇒ ψ

ψ

This rule is named “implies elimination,” meaning that if ϕ is true, and if ϕ =⇒ ψ, then
we can conclude that ψ is true. The natural deduction system also includes various other proof
rules. In combination, these rules form a sound and complete system that can be used to draw
conclusions from sets of logical formulas.

First-order Logic. While propositional logic is a fundamental framework for dealing with
logical statements, it can be quite limited if we wish to consider more intricate properties of

2.2 Syntax of Datalog 7

objects. For example, consider the sentence “every parent is older than their child.” Under
propositional logic, it is impossible to reason about components such as every and older than.
Thus, first-order logic (also called predicate logic) is an extension that allows predicates that
define objects’ properties. For the above example, we could define the predicate parent(X,Y),
which is true if X is the parent of Y , and the predicate older(X,Y), which is true if X is older
than Y . In first-order logic, we also have quantifiers, such as ∀ meaning “for all,” and ∃ meaning
“there exists.” Then, the following first-order statement defines the same sentence as above:

∀X ∀Y, parent(X,Y) =⇒ older(X,Y)

This statement can be read as “for all X and Y, if X is Y’s parent, then X is older than Y,”
giving the same meaning as the above sentence.

Similar to propositional logic, we would wish to draw conclusions from a set of first-order
statements, and so there are systems of deduction rules similar to natural deduction, which apply
to first-order logic. However, the extra expressiveness of first-order logic means that it becomes
undecidable. In other words, there does not exist a decision procedure that can determine
whether an arbitrary first-order formula is logically valid.

Datalog as a Fragment of First-order Logic. The Datalog language is a subset of full
first-order logic. In particular, Datalog programs are sets of Horn clauses, a restricted class of
first-order formulas where each statement is of the form

(p ∧ q ∧ . . . ∧ t) =⇒ u

containing a conjunction of predicates, implying a single predicate. Here, each p, q, etc., is a
first-order predicate of the form R(x1, . . . , xn). This restricted Horn logic is decidable. Thus, in
contrast to the undecidability of full first-order logic, the satisfiability of a set of Horn clauses
can be computed in finite time (and, in fact, in polynomial time with respect to data size).

In Datalog, all formulas are implicitly universally quantified, i.e., a Datalog clause would be:

∀x1, . . . , xn : (R1(x1, . . .) ∧ . . . ∧Rk(xk, . . .)) =⇒ R(x, . . .)

Therefore, quantifier symbols are typically excluded when writing Datalog clauses.
Van Emden and Kowalski in 1976 [39] investigated the properties of Horn clauses when used

as a programming language. This seminal work proposes a number of semantics, namely, an
operational semantics, a model-theoretic semantics, and a fixpoint semantics, and demonstrates
equivalences between these three semantics. Having established the utility of Horn clauses when
used as a programming language, this work was the starting point of a long history of logic
programming research.

2.2 Syntax of Datalog

A Datalog program P consists of a finite set of rules. A rule ri is a Horn clause of the form

R(X) :− R1(X1), . . . , Rn(Xn).

8 Chapter 2: Datalog

Here, a corresponding mathematical logic statement would be

∀x1, . . . , xk : R1(X1), . . . , Rn(Xn) =⇒ R(X)

where x1, . . . , xk appear in X1, . . . , Xn. However, the convention in logic programming is to
exclude the implicit universal quantifiers and write the implication in reverse order.

Each Rj is a relation name, and each Xj is a sequence of terms (terms are variables or
constants) of correct arity. Each Rj(Xj) is a predicate. The predicate R(X) on the left of the
:− sign is the head of the rule and R1(X1), . . . , Rn(Xn) is the body.

A predicate R(X) may be instantiated, with variables replaced by appropriate constants, to
form a fact or tuple. An instantiated rule is a rule where each predicate is instantiated such that
all variable substitutions are consistent between predicates. We say that a relation is extensional
(or in the extensional database, EDB) if no predicates with that relation occur in the head of any
rule or intensional (in the intensional database, IDB) otherwise. In other words, EDB relations
can be seen as the input for a Datalog program, while IDB relations are derived through the
execution of the program and can be intermediate or output. A tuple is EDB or IDB if the
associated relation is EDB or IDB, respectively.

Semantically, a Datalog rule is read from right to left as a universally quantified implication:
“for all rule instantiations, if every tuple in the body is derivable, then the corresponding tuple
for the head is also derivable.”

Constraints and Functions. Basic Datalog, as presented above, has simple syntax and se-
mantics; however, it can be limited for practical uses. Thus, extensions are commonly added to
Datalog implementations, such as constraints and functions.

Constraints such as ≤, =, etc. are added to the body of the rule and impose the meaning that
an instantiated rule is only valid if the constraints are all satisfied. For example, the following
rule

sibling(X,Y) :− parent(P,X), parent(P, Y), X ̸= Y.

is interpreted as “if P is a parent of X, and P is a parent of Y , and X is not equal to Y , then
X is a sibling of Y .” These constraints are a powerful extension of Datalog, which allow the
insertion of extra semantics based on the domains of terms.

Functions such as +, −, concat, max, etc. can be used in place of a term in a Datalog rule.
For example, the following rule

path(X,Z,C1 + C2) :− edge(X,Y,C1), path(Y,Z,C2), C1 + C2 ≤ 10.

computes lengths of weighted paths in a graph, up to a weight limit of 10. Note here that
functions can be used inside predicates and constraints and denote the natural meaning of the
function. Semantically, the use of functions extends the expressivity of Datalog, and usual
guarantees such as termination and decidability no longer hold under Datalog with functions.

2.2 Syntax of Datalog 9

Stratification and Negation. Predicates in Datalog rules may also be negated, denoted with
a ! symbol. For example, the following rule contains negated predicates !Rk+1(Xk+1), . . . , !Rn(Xn).

R(X) :− R1(X1), . . . , Rk(Xk), !Rk+1(Xk+1), . . . , !Rn(Xn)

A negated predicate must contain only variables that also appear in some positive predicate in
the rule body, a property known as groundedness. Semantically, a negated predicate holds true
if the corresponding tuple is not true in the database.

With the possibility of recursion in Datalog, the semantics of negation become more involved.
There are several possible semantics for negation, with the most widely adopted in modern
Datalog engines being stratified negation. Stratified negation avoids the issues associated with
cyclic negations, where the semantics of a program can become ambiguous (i.e., there may
be multiple correct solutions if cyclic negation is allowed). To explain the stratified negation
semantics, we first explain stratification.

A Datalog program can be stratified by constructing a dependency graph with relation names
as nodes and edges going from relation A to relation B if there is a rule with A in the body
and B as the head. Then, each strongly connected component of the dependency graph is a
stratum, with an ordering over strata determined by the topological order over the SCC graph.
For example, consider the following Datalog program, shown with its dependency graph.

A :− B.

B :− C.

C :− A,B.

D :− B,C.

A B

C

D

Here, relations A, B, and C are mutually recursive, so they would form one stratum. Then
D depends only on B and C, so is in its own stratum. Therefore, a stratification of the above
Datalog program is {A,B,C} , {D}.

In stratified negation, any negated predicates in a rule must have a relation from an earlier
stratum than the head of the rule. For example,

A :− B.

B :− C.

C :− A, !B.

would be disallowed under stratified negation since C and B are in the same stratum. By
enforcing this stratification, cyclic negations are avoided, which is important for the fixpoint
semantics of Datalog. Each stratum is evaluated separately to evaluate a stratified program in
order of the stratification. Then, any negations that appear in some stratum must be of relations
in an earlier stratum. The truth value of these negations is a simple check for the existence of
the corresponding tuple in the relation, which was already computed in the earlier stratum.

10 Chapter 2: Datalog

2.3 Running Example

One of the major applications of modern Datalog is specifying static program analysis problems.
Static program analysis is the process of automatically analyzing the possible behaviors of a
program. This is a crucial process in many aspects of software development, for example,
finding optimization opportunities in compilers, checking for security and correctness properties
such as dangling references or uninitialized memory, providing assistance tools in IDEs, ensuring
business compliance requirements, among many other applications. For a more comprehensive
overview, [40] gives a detailed explanation of static program analysis.

Static program analysis is concerned with checking properties that hold for all possible pro-
gram inputs. For example, suppose a program analysis says there are no possible null pointer ex-
ceptions. In that case, this property holds regardless of program input, and therefore, the source
program will never encounter a null pointer exception. Of course, depending on the property to
check, verifying it for all inputs is generally impossible due to the halting problem [41]. Therefore,
all program analyses employ conservative abstractions [42] of actual program semantics. For ex-
ample, a sign analysis could be performed by abstracting all numbers in the program to being
positive, negative, or zero. Then, operations in the program are assigned to semantics in the
abstract domain, e.g., positive+positive = positive, and positive+negative = unknown.
This abstraction covers all possible behaviors of numbers, and is conservative in that an unknown

value may take on any positive, negative, or zero value.
One form of static program analysis is pointer analysis. A pointer analysis finds relationships

between pointers and memory cells, namely, which pointers in a program may point to which
memory cells. The abstraction used in pointer analysis is that an arbitrary set of possible
memory cells is abstracted to object creation sites. For instance, if line 100 of a source program
contains a new statement, then line 100 is treated as a representation of all objects created from
that new statement. Pointer analysis is an important problem for finding relationships such as
aliasing, where two pointers may point to the same object, which has implications for security
or parallelism opportunities. In general, a simple pointer analysis handles the following kinds of
program statements:

• Allocation x = new Object(), where x now points to the new created object

• Assignment x = y, where any memory cells pointed to by y may now also be pointed to
by x

• Load x.f = y and store y = x.f, which propagates pointer information similarly to as-
signment

• etc., different implementations of pointer analysis may consider different kinds of state-
ments

The result of a pointer analysis would be a relation VariablePointsTo. For example, if this
relation contains the tuple VariablePointsTo(sum,object1), then the variable sum may point
to the object object1 during the execution of the source program.

2.3 Running Example 11

1 var admin = new Admin();
2 var sec = new AdminSession();
3 var ins = new InsecureSession();
4 var userSession;
5 var superuser;
6

7 admin.session = ins;
8

9 if (admin.isAdmin && admin.isAuth) {
10 admin.session = sec;
11 superuser = sec;
12 } else {
13 userSession = ins;
14 superuser = userSession;
15 }
16 superuser = admin.session;

(a) Source Program

1 new(admin,L1).
2 new(sec,L2).
3 new(ins,L3).
4 new(userSession,nullptr).
5 new(superuser,nullptr).
6

7 store(admin,session,ins).
8

9

10 store(admin,session,sec).
11 assign(superuser,sec).
12

13 assign(userSession,ins).
14 assign(superuser,userSession).
15

16 load(superuser,admin,session).

(b) EDB Tuples

1 vpt(Var, Obj) :- new(Var, Obj). //r1
2

3 vpt(Var, Obj) :- assign(Var, Var2),
4 vpt(Var2, Obj). //r2
5

6 vpt(Var, Obj) :- load(Var, Inter, F),
7 store(Inter2, F, Var2),
8 vpt(Inter, InterObj),
9 vpt(Inter2, InterObj),

10 vpt(Var2, Obj). //r3
11

12 alias(Var1, Var2) :- vpt(Var1, Obj),
13 vpt(Var2, Obj),
14 Var1 != Var2,
15 Obj != nullptr. //r4
16

17 safevar(Var) :- vpt(Var, _),
18 !vpt(Var, nullptr). //r5

(c) Datalog Points-to Analysis

Figure 2.2: Program Analysis Datalog Setup

12 Chapter 2: Datalog

sec admin ins

superuser userSession

L2 L1 L3

nullptr

n
ew

n
ew

n
ew

store[session] store[session]

load[session]

a
ss
ig
n

ne
w

new

assign assign

Figure 2.3: Points-to Input Diagram

2.3.1 Pointer Analysis in Datalog

We illustrate Datalog as a language for expressing pointer analyses through Figure 2.2. In this
scenario, we have a source program to analyze (Figure 2.2a). To perform the analysis, the
source program is encoded as a set of Datalog tuples (Figure 2.2b). In this case, we have tuples
of relations new, assign, load, and store, where each tuple encodes a line of the source program.
This set of tuples forms the EDB input for the Datalog-based analysis. The Datalog program
(Figure 2.2c) computes the relations vpt (short for VariablePointsTo, representing variables
which may point to objects), alias (representing pairs of variables which may point to the same
object), and safevar (representing variables which do not point to the special nullptr object).

Figure 2.3 shows a diagrammatic representation of the pointer relationships in the source
program. Objects are represented as rectangles, and variables are represented as ellipses. Edges
represent input EDB relations, for example the edge labeled assign going from userSession to
ins represents a tuple assign(userSession,ins).

For the points-to analysis, the Datalog program (Figure 2.2c) consists of five Datalog rules.
For example, the rule r2 is

vpt(Var, Obj) :− assign(Var, Var2), vpt(Var2, Obj).

This rule, r2, can be interpreted as “if we have an assignment from Var to Var2, and if Var2

may point to Obj, then also Var may point to Obj”.
In combination, the five Datalog rules represent a flow-insensitive but field-sensitive points-

to analysis. The IDB relations vpt, alias, and safevar represent the result of the analysis,
computing variables which may point to objects, pairs of variables that may alias with each
other, and variables that cannot point to nullptr, respectively.

2.4 Semantics and Evaluation of Datalog

There are three main approaches to defining semantics for Datalog programs: model-theoretic se-
mantics, fixpoint semantics, and proof-theoretic semantics. Model-theoretic semantics provides

2.4 Semantics and Evaluation of Datalog 13

a definition for Datalog semantics, but it does not correspond to any concrete algorithm for eval-
uation. On the other hand, fixpoint semantics and proof-theoretic semantics provide algorithms
for Datalog evaluation, corresponding to bottom-up and top-down evaluation, respectively.

Bottom-up evaluation is used in modern Datalog systems such as Soufflé [35] and LogicBlox
[24] and tends to exhibit better performance for large-scale Datalog applications with large
database sizes. Top-down evaluation is employed by older systems such as XSB [43] and is
similar to standard Prolog evaluation. Basic top-down evaluation loses some guarantees of
Datalog, such as termination, but modern implementations employ techniques such as tabling
to mitigate these limitations. Both evaluation strategies, along with model-theoretic semantics,
are discussed in more detail in [12, 44].

2.4.1 Model-theoretic semantics

The model-theoretic semantics of a Datalog program is purely definitional and does not provide
an algorithm to compute the result of a Datalog program. The model-theoretic semantics is
defined in terms of a Herbrand base. We refer to a Datalog program P with some database D (a
database is a set of tuples) as PD. Then, the Herbrand universe HPD

is the set of all constants
that appear in the database. The Herbrand base BPD

is the set of all possible tuples constructed
by taking predicates in PD and substituting variables with constants from HPD

.

Given these basic definitions, we begin to define a model-theoretic semantics. An interpre-
tation of PD is some subset I ⊆ BPD

. Now, let I be an interpretation and consider a rule r in
P :

R(X) :− R1(X1), . . . , Rk(Xk)

We say that the interpretation I satisfies r (i.e., I |= r) if for every instantiation of r, when
tuples corresponding to the body literals R1(X1), . . . , Rk(Xk) are in I, then the corresponding
head tuple R(X) is also in I. An interpretation I is a model of PD if I satisfies every rule in P .

If χ is the set of all models of PD, then ∩χ is the minimal model of PD. The model-theoretic
semantics of PD is defined to be this intersection ∩χ and is minimal in the sense that it includes
only the tuples necessary to form a model and no extra tuples.

2.4.2 Bottom-Up Evaluation

Bottom-up evaluation of a Datalog program P , which corresponds to the fixpoint semantics,
describes a general method of starting from the EDB tuples to generate all IDB tuples. For
Datalog, the basic bottom-up evaluation strategy is termed naïve evaluation. The process begins
from an instance I of P , containing only EDB facts. Then, an immediate consequence of I is a
fact t such that either t ∈ I, or t ← t1, . . . , tn is a valid instantiation of a rule with each ti ∈ I.
Then, the main operation for naïve evaluation, the immediate consequence operator, ΓP maps
one instance of the program to another by applying immediate consequences:

14 Chapter 2: Datalog

ΓP : inst(P)→ inst(P)

ΓP (I) = I ∪ {t | t :− t1, . . . , tn is an instantiated rule with all ti ∈ I}

It can be seen that ΓP is monotone (with stratified negation, evaluating stratum by stratum in
order gives monotonicity in each stratum), and using Knaster-Tarski’s Fixpoint Theorem [45], we
can show that there exists a minimum fixpoint of ΓP [12]. Thus, the naïve evaluation algorithm
applies ΓP to the input instance repeatedly, until a fixpoint is found. The resulting fixpoint is
denoted the model of P given I, or P (I), and is the final result of bottom-up evaluation.

An example of bottom-up evaluation is given in Figure 2.4. Since this program contains a
stratified negation, we show the stratification of the IDB relations:

vpt

alias

safevar

In the following example, the initial input is denoted E, consisting of only the input tuples
directly corresponding to the source program. For the first stratum, in the first iteration, the
evaluation applies the non-recursive rule r1 to compute the initial vpt tuples. Then, in the
second iteration, the recursive rules r2 and r3 are applied. In the third iteration, no new vpt

tuples can be discovered, so a fixpoint is reached.

E =


new(admin,L1), new(sec,L2), new(ins,L3), new(userSession,nullptr),

new(superuser,nullptr), store(admin,session,ins),

store(admin,session,sec), load(superuser,admin,session),

assign(userSession,ins), assign(superuser,sec)


ΓP (E) = E ∪

{
vpt(admin,L1), vpt(sec,L2), vpt(ins,L3),

vpt(userSession,nullptr), vpt(superuser,nullptr)

}
Γ2
P (E) = ΓP (E) ∪ {vpt(userSession,L3), vpt(superuser,L2), vpt(superuser,L3)}

Γ3
P (E) = Γ2

P (E)

Figure 2.4: Bottom-up evaluation of the vpt stratum of the running example (Figure 2.2c),
where E is the input instance

In the subsequent strata, the evaluation separately computes alias and safevar.

Γ4
P (E) = Γ3

P (E) ∪

{
alias(userSession,ins), alias(superuser,sec),

alias(superuser,ins)

}
When computing safevar, the negation must be satisfied. Since the vpt relation is already at

fixpoint, the negation is equivalent to checking a constraint, which is satisfied if the corresponding

2.4 Semantics and Evaluation of Datalog 15

tuple is not contained in vpt.

Γ5
P (E) = Γ4

P (E) ∪ {safevar(admin), safevar(sec), safevar(ins)}

Algorithm 1 Naïve(P , E)
1: I0 ← E

2: for all k ∈ {1, 2, . . .} do
3: Ik ← ΓP (Ik−1)

4: if Ik = Ik−1 then
5: return Ik−1

6: end if
7: end for

Formally, naïve evaluation is presented in Algorithm 1 for a single stratum. The algorithm
follows a simple fixpoint structure, where the immediate consequence operator is applied in each
iteration until a fixpoint is reached.

Semi-naïve Evaluation. While the naïve evaluation presented above demonstrates a stan-
dard bottom-up evaluation, it is sub-optimal in practice. Naïve evaluation will repeat computa-
tions since a tuple computed in some iteration will be recomputed in every subsequent iteration.
Therefore, the standard implementation of bottom-up evaluation in real systems such as [35,
46] is semi-naïve. Semi-naïve evaluation contains one main optimization over naïve evaluation,
which we call the new knowledge optimization.

For the new knowledge optimization, in each stratum’s fixpoint computation, the evaluation
is optimized in each iteration by considering the new tuples generated in the previous iteration.
A new tuple is generated in the current iteration only if it directly depends on tuples generated
in the previous iteration, therefore avoiding the recomputation of tuples already computed in
prior iterations.

Algorithm 2 Semi-Naïve(P , E)
1: ∆0 ← E

2: for all k ∈ {1, 2, . . .} do
3: Ik−1 ←

⋃
0≤i<k ∆i

4: ∆k ← {t | t :− t1, . . . , tn is an instantiated rule with all ti ∈ Ik−1 and some ti ∈ ∆k−1} \ Ik−1

5: if ∆k = ∅ then
6: return Ik−1

7: end if
8: end for

Formally, semi-naïve evaluation is shown in Algorithm 2 for a single stratum. Compared to
naïve evaluation, the main difference is the additional auxiliary sets ∆i, which contain the newly
generated tuples in iteration i. During the main rule evaluation step (line 4), the immediate
consequence operator is extended so that at least one tuple in the body of the instantiated rule
is contained in ∆k−1. In other words, at least one body tuple should be newly computed in

16 Chapter 2: Datalog

the immediately previous iteration. As a result, previously generated tuples are not recomputed
under semi-naïve evaluation.

Incremental Evaluation. A recent development in Datalog is in incremental evaluation [47,
48, 49, 50]. The main idea of incremental evaluation is to be able to update the result of
a Datalog evaluation given some changes to the input (i.e., deleting or inserting some input
tuples) without discarding and recomputing the result from scratch. Therefore, incremental
evaluation is considerably more complex than other bottom-up evaluation strategies; however,
it provides numerous benefits for large-scale Datalog programs where a large input set may
change only slightly between runs of the Datalog program.

E1 P I1

E2 P I2

E3 P I3

(a) Standard

∅

E1 ∆P I1
σ1

∆E1→2 ∆P I2
σ2

∆E2→3 ∆P I3

(b) Incremental

Figure 2.5: Standard vs. Incremental Evaluation

The general architecture of an incremental evaluation is presented in Figure 2.5, which
shows how an evaluation proceeds for three epochs (an epoch is one round of evaluating a
Datalog program given an input set). Figure 2.5a shows a standard bottom-up evaluation,
where each of the three epochs is evaluated entirely independently of each other. In contrast,
Figure 2.5b shows an incremental evaluation. This incremental evaluation carries a computation
state, denoted σ, which allows the subsequent epoch to re-use computations from the previous
epoch. For example, the second epoch uses the computation state from the first epoch and
the input changes (the deletions and insertions, denoted ∆E1→2) to produce the same resulting
output I2 more efficiently.

Semi-naïve evaluation can effectively handle input tuple insertions by treating new insertions
as delta knowledge. However, deletions and negations are more challenging, and several different
strategies have been proposed in the literature [47, 48, 49, 50]. We further discuss incremental
evaluation in Section 3.2 and Chapter 5.

2.4.3 Top-Down Evaluation

While most of this thesis concerns extending bottom-up evaluation methods, Chapter 4 uses
concepts of top-down evaluation and the related notion of proof trees. Therefore, we present a
basic introduction to top-down evaluation in this section.

Top-down evaluation describes the opposite method of bottom-up evaluation, where top-
down starts from a query and checks in each step whether there are rules or facts in the program
that make the query satisfiable. The query takes the form of a goal clause, which is a sequence

2.4 Semantics and Evaluation of Datalog 17

of predicates. Generally, a query in top-down evaluation is given by the user, who wishes to
check if a certain set of tuples is derivable by the program.

← A1, . . . , An

A top-down evaluation, such as SLD resolution, considers each predicate Ai in the goal
clause and searches for some rule with Ai as the head. Constants may need to be substituted for
variables, so they match (a process known as unification), then Ai in the goal clause is replaced
with the body of that rule. This step is applied repeatedly until either we reach EDB facts, in
which case the original goal clause holds true, or a valid instantiation cannot be found at some
point, in which case the original goal clause does not hold.

An example of top-down evaluation is given in Figure 2.6

← vpt(userSession, L3)

← assign(userSession, Var2), vpt(Var2, L3)

← assign(userSession, ins), vpt(ins, L3)

← assign(userSession, ins), new(ins, L3)

← □

Figure 2.6: Example top-down evaluation for our running example (Figure 2.2c) showing
vpt(userSession, L3) holds

However, basic top-down evaluation requires a notion of backtracking since it is unspecified
which rule will be selected out of many possible rules matching a particular goal predicate. If
it selects a rule that cannot generate an instantiation of Ai, backtracking may be needed to try
a different rule. In addition, top-down evaluation has no guarantees for termination in its most
basic form. This can be illustrated by the case where the program contains a rule A← A, where
top-down evaluation may try to replace a predicate A with itself and thus never terminates.

The computation process of top-down evaluation can also be viewed as a tree. Formally, this
is known as a proof tree, which shows the steps taken to prove that a tuple holds true. For the
above example (Figure 2.6), a proof tree is as follows.

assign(userSession, ins)

new(ins, L3)

vpt(ins, L3)

vpt(userSession, L3)

Proof trees are also important as a form of provenance, discussed in Section 3.1 and Chapter 4.
In particular, proof trees are especially relevant for debugging and are one of the advantages of
top-down evaluation compared to bottom-up.

18 Chapter 2: Datalog

2.5 Datalog Engines

While Section 2.4 discusses bottom-up and top-down evaluation at an algorithmic level, real-
world implementations of Datalog engines require sophistication in data structures, paralleliza-
tion and other aspects, to achieve the high performance necessary for modern real-world work-
loads. Modern Datalog engines typically employ bottom-up evaluation (with some exceptions)
due to the characteristics of modern applications that require higher efficiency for computing
large amounts of output data.

We present a non-exhaustive list of modern Datalog engines:

• µZ [51] - µZ is a bottom-up solver for fixed points with constraints, based on the Z3 SMT
solver. It includes several extensions over standard Datalog, with the ability to plug in
alternative data structures, abstract relations, lattices, etc.

• LogicBlox [24] - LogicBlox is a commercial bottom-up Datalog engine designed to be
accessible and easy to use but with enough performance to tackle large program analysis
tasks.

• BDDBDDB [46] - BDDBDDB is a bottom-up Datalog engine using binary decision dia-
grams (BDDs) to represent relations. It was designed and specialized for program analysis
use cases.

• Differential Datalog [52] - Differential Datalog is an incremental Datalog engine built on
top of the Differential Dataflow framework [50]. The incremental evaluation allows to
insert or delete input tuples to update the result of a computation efficiently.

• Socialite [37] - Socialite is another bottom-up Datalog engine designed for large-scale net-
work analyses such as for social networks. It supports features such as recursively defined
aggregates which provide concise semantics for these large-scale network applications.

• Coral [53] - Coral was an early Datalog engine, which was one of the earliest implementa-
tions of a bottom-up deductive database system.

• XSB [43] - XSB was developed at a similar time to Coral, but XSB instead uses a top-down
approach. One of its main innovations is implementing SLG resolution, which provides
extensions over SLD resolution such as tabling to mitigate the termination and performance
issues of standard top-down.

However, in this thesis, our work focuses on extending Soufflé.

2.5.1 Soufflé

Soufflé [35] is a modern Datalog engine that uses a semi-naïve bottom-up evaluation strategy.
It uses one of two main methods for executing Datalog programs: (1) using Datalog source
code to synthesize high-performance parallel C++ code, or (2) interpreting a Datalog program
directly. Figure 2.7 shows a flow chart of the execution of a Datalog program using Soufflé. In

2.5 Datalog Engines 19

the first stages, a Datalog source program is translated into an Abstract Syntax Tree (AST)
and then into an intermediate representation called Relational Algebra Machine (RAM). Then,
a RAM program is either synthesized into C++ code or interpreted directly. In either option,
the execution takes a set of input facts (the EDB) and produces an output result (the IDB).

Datalog

P
ar

se
r

AST

T
ra

ns
la

to
r

RAM

Synthesizer C++

Interpreter

Result

Input Facts

Figure 2.7: Flow chart of Soufflé

To illustrate the translation process, consider the rule r2 in our running example:

vpt(Var, Obj) :− assign(Var, Var2), vpt(Var2, Obj).

During the execution of this rule, r2 is translated into the RAM code shown in Figure 2.8.
RAM is an intermediate representation that combines relational algebra operations and imper-
ative constructs such as loops and conditions.

1 LOOP
2 IF ((NOT (assign = ∅)) AND (NOT (delta_vpt = ∅)))
3 FOR a IN assign
4 FOR b IN delta_vpt ON INDEX b.0 = a.1
5 IF (NOT (a.0, b.1) ∈ vpt)
6 INSERT (a.0, b.1) INTO new_vpt
7

8 ... // other vpt rules
9

10 BREAK IF (new_vpt = ∅)
11 MERGE new_vpt INTO vpt
12 SWAP (delta_vpt, new_vpt)
13 CLEAR new_vpt
14 END LOOP

Figure 2.8: RAM code for rule r2

The above RAM code includes auxiliary relations for recursively defined relations, new_vpt
and delta_vpt in this case, which are required to keep track of tuples that are new in the
current iteration, and new in the previous iteration respectively. These auxiliary relations allow
for semi-naïve evaluation of the recursive rule. The structure of the RAM code is a loop nest,
which iterates through each relation in the body of the rule in sequence, ensuring at each stage
that the variable bindings are compatible through the use of an index (line 4). Then, if the

20 Chapter 2: Datalog

newly generated tuple is actually new (i.e., not in vpt), it is inserted into new_vpt (line 6). The
remaining lines perform book-keeping operations to ensure that new_vpt and delta_vpt are in
the correct state for the next iteration.

In general, a recursive rule under semi-naïve evaluation is evaluated using a number of
different versions, where a different literal in the body of the rule becomes delta in each version.
For example, a rule

R(X) :− R1(X1), . . . , Rn(Xn).

is translated to the following, where each literal in the body of the rule becomes delta in each
version of the rule. In the following rules, Ri

k denotes the state of relation Rk in iteration i.

newi+1
R0

(X0) :− deltaiR1
(X1), R

i
2(X2), . . . , R

i
n(Xn)

. . .

newi+1
R0

(X0) :− Ri−1
1 (X1), . . . , delta

i
Rk

(Xk), . . . , R
i
n(Xn)

. . .

newi+1
R0

(X0) :− Ri−1
1 (X1), . . . , R

i−1
n−1(Xn−1), delta

i
Rn

(Xn)

Each version of the rule in the Soufflé translation pipeline, becomes its own loop nest (cor-
responding to lines 3 to 6 in Figure 2.8). The relation book-keeping operations (corresponding
to lines 11 to 13) are performed at the end of all loop nests for all relations in the stratum.

The translation from RAM to C++ code is rather natural given the procedural nature of
RAM. The main challenge is to use high-performance data structures to store relations, with
support for fast reads, insertions, and index operations.

Data Structures. The main requirements for a high-performance data structure for Datalog
evaluation are detailed in [5]. This work introduces the concept of a Datalog-Enabled Relational
(DER) data structure. The functional requirements of such a data structure are that it must
support the following operations:

• insert(Tuple t) - inserting a fixed-size n-ary tuple, ignoring duplicates

• begin() and end() - provide iterators to traverse all tuples in the relation

• lower_bound(Tuple t) and upper_bound(Tuple t) - provide iterators to the lower bound
or upper bound of a query tuple, according to some predefined order

• find(Tuple t) - provides an iterator to a query tuple if it is present

• empty() - whether the relation is empty

Furthermore, performance can also be increased by using concurrent data structures, which
take advantage of modern CPUs having multiple cores. In a concurrent context, any DER data

2.5 Datalog Engines 21

structure must ensure that concurrent insertions are handled correctly and concurrent reads are
correct (however, interleaved reads and insertions never happen due to the nature of loop nests
for semi-naïve Datalog evaluation).

The paper [8] presents a specialized concurrent B-tree, explicitly designed for Datalog eval-
uation workloads. The B-tree data structure is a natural fit that fulfills all of the functional
requirements for a DER data structure. Thus, the main design contribution in [8] is a locking
mechanism to enable concurrent Datalog evaluation. The proposed solution is to use an opti-
mistic read-write lock for each node. This locking scheme assumes that any thread accessing a
node is reading the node (e.g., to find the correct position to perform an insertion), and if any
modifications are to be made, then the lock is upgraded to allow writing.

Index Selection. While the data structures presented above are critical for high-performance
parallel Datalog evaluation, they do not form the complete story. Another important aspect
of Soufflé’s performance is specializing the data structures to suit the operations performed in
the RAM program. This process is called automatic index selection [54], and it adapts the
data structures for each relation depending on the operations performed on that relation. For
example, consider the RAM program in Figure 2.8. Line 4 performs an index operation on
the delta_vpt relation, requiring that the data structure should be able to quickly find tuples
where the first element (b.0) matches some given value. For this requirement, the data should
be sorted based on the lexicographical order where the first element comes first (i.e., the sort
order a < b ⇐⇒ a[0] < b[0] or (a[0] == b[0] and a[1] < b[1])) to form an index. Therefore,
the data structure storing delta_vpt should be specialized so that it holds binary tuples, sorted
with the above lexicographical order.

In general, a Soufflé RAM program may have multiple different operations on each relation,
requiring multiple different index orders. Therefore, the minimum index selection problem, as
defined in [54], aims to find the minimum number of indexes (i.e., lexicographical orders) required
to accelerate all index operations on the relation.

22 Chapter 2: Datalog

Chapter 3

Related Work

This thesis covers several developments in Datalog evaluation strategies. While modern Datalog
engines and language features enable effective programming and evaluation of large-scale Datalog
programs, other features such as explainability, incrementalization, and debugging are still a
challenge. Therefore, this thesis focuses on extending a traditional Datalog evaluation to support
provenance, incremental evaluation, and debugging features. This chapter surveys the important
works in these areas to put our contributions in context.

3.1 Provenance

Data provenance describes a general concept of tracing the path that data takes through a
system. Provenance information allows us to trace the origins and history of data, for example,
to track which inputs to a query are used to compute which outputs. Such information is
vital for many reasons, including auditing, trustworthiness, debugging, and, more generally,
understanding the origins of output data.

For instance, Cheney et al. [55] argue that the necessity of provenance is driven by the
increasing ease of creating and storing data, and that provenance helps ensure the integrity
of such data. In particular, large database systems such as data warehouses benefit from the
capabilities of a provenance system. For this database domain, provenance is aptly defined in
[56] as “an explanation of the ways [facts] are derived.” This provenance information can also
provide valuable information for debugging database queries, as described in [57]. In the Datalog
world, which this thesis focuses on, provenance is closely related to proof trees, an approach used
in practice by [58].

3.1.1 Classification of Provenance

Provenance can be classified in several different ways, according to the desired semantics. The
survey [55] presents three of the possible approaches: why, how, and where-provenance.

Why-provenance. Why-provenance, which is closely related to the notion of lineage, de-
scribes a relationship between the output tuples of a Datalog program with input tuples. In-

24 Chapter 3: Related Work

tuitively, the lineage of an output tuple is a subset of input data that ‘contributed to’ the
production of that output tuple.

More precisely, [55] defines the why-provenance of an output tuple t as a set of proofs called
the witness basis. Each proof is a set of input tuples I ′, called a witness, such that the program
will produce t if given I ′ as input. Linking to proof trees, [59] shows that the set of tuples in
the witness basis corresponds to the leaves of a proof tree for t.

The lineage framework is advantageous because it does not include the internal semantics of
queries. Thus, lineage and why-provenance is a suitable framework for developing provenance
mechanisms targeted to the end-users of a database system, who may not know the internal
query operations. For instance, SubZero [60] and Taverna [61] are both scientific databases
targeted towards bioinformatics and other life science users. These scientific databases also
include a utility for lineage, which scientists can use to understand the sources of their data
better.

How-provenance. While why-provenance is a powerful framework for understanding the re-
lationships between input and output data, it does not provide additional information about how
the output tuple is derived. To this end, how -provenance is a generalization of why-provenance
that describes how the operators in a query are used to derive the output. The paper [62]
proposes a framework of using semirings 1 to describe provenance.

In [62], the authors propose to label each tuple by an element in the provenance semiring.
This semiring element then describes the how-provenance of the corresponding tuple. Formally,
this approach defines some semiring (K,+, ·, 0, 1) (here, +, ·, 0, 1 are abstract objects, not
related to the standard meaning of these symbols), and a function mapping from tuples to K:

f : {t} → K

This function provides the annotation of a tuple by a semiring element. Then, the provenance
of an output tuple t is defined as the sum of the product of the leaves of each possible proof tree
deriving t, where the leaves are the annotations of input tuples.

∑
proof trees τ deriving t

 ∏
tuples t′∈leaves of τ

f(t′)


Through this structure, the how-provenance of a tuple closely corresponds with its proof

trees, where the resulting sum of products directly describes the leaves of the proof trees.
This general framework of using semirings to describe provenance has led to numerous con-

crete applications and systems. For example, probabilistic databases [63] and databases with
uncertainty [64] use the set [0, 1] as the basis of the semiring for tracking how probabilities propa-
gate through a query. Then, the probability of an output tuple can be computed by propagating
the probabilities of the inputs through the semiring operators. Another use of the semiring

1A semiring is an abstract mathematical object (K,+, ·, 0, 1) defined as a set of elements K with two operators
+ and ·. 0 and 1 are identity elements for + and · respectively.

3.1 Provenance 25

framework is for trust and access control [65, 66], where trust or access policies are encoded as
provenance information propagated to query outputs.

Where-provenance. While why-provenance and how-provenance deal with the origins of tu-
ples as they are computed through a query, where-provenance takes a different approach to
describe the provenance of each element in a tuple. The paper [59] states that it is closely
connected to why-provenance since the where-provenance of any value in an output tuple is a
subset of the witnesses of that tuple. Formally, [59] provides a constructive definition of where-
provenance, referred to as a derivation basis. A derivation basis traces the paths through a query,
collecting all values along the way which derive the particular output elements. The survey [55]
then extends this definition to general relational queries, providing a direct definition in terms
of the relational calculus operations that make up the query.

Where-provenance provides the ideal framework for applications where tracing the paths of
data elements is important. For instance, annotation management systems [67, 68] use where-
provenance to track and explain to users where specific output values are computed from. For
applications such as debugging queries, where-provenance may also be used to discover parts of
rules that lead to incorrect output values. However, this approach has not been explored in the
literature as far as we are aware.

3.1.2 Provenance in Datalog

One of the main methods of encoding provenance information in a Datalog execution is rewriting
the Datalog program to capture information such as rule firings or an execution graph. A number
of previous approaches adopted this strategy [58, 57, 69, 56, 70, 71]. A common thread in each of
these techniques is that they rewrite a Datalog program to store the full provenance information.

For example, [57] rewrites Datalog into Statelog [72] or more complex Datalog, with the
resulting program capturing a provenance graph. One of the applications of this full provenance
encoding is in profiling. For example, [57] demonstrate how the provenance system can be used
to compare different re-writings of the transitive closure program in terms of the number of
intermediate tuples, rule firings, and other statistics. This demonstrates that provenance can be
used not just for debugging but also for profiling small Datalog instances.

However, the weakness of this approach is that it stores the full provenance information,
which may be prohibitively large for real-world Datalog instances. This is reflected in the
experiments of [57], in that the largest experiment presented was a transitive closure example
with 1710 nodes and 3936 edges, containing 304,000 paths. This result suggests that the full
provenance storage approach does not scale well to large databases containing millions of output
tuples.

To avoid storing full provenance information, [56] introduces the notion of selective prove-
nance. In this approach, the concept of a derivation tree pattern is proposed as a specification
language to describe the desired provenance output. The derivation tree patterns are related to
tree grammars, and a particular pattern provides a specification that all generated proof trees
must match. Then, the Datalog program is instrumented based on the given derivation tree

26 Chapter 3: Related Work

pattern, such that the program computes the relevant proof trees.

A similar notion of provenance questions is introduced in [71], which allows a user to specify
a pattern for the desired provenance output. Then, the Datalog program is instrumented based
on the provenance question to produce explanations that match the question. One advantage of
[71] is that it allows the explanation of missing answers. However, since it is largely impractical
to explain why something is missing, the proposed solution requires the user to annotate the
desired domain to perform a constrained search for all possible derivations of the missing tuple.

The main disadvantage of the strategies in [56, 71] is that the program needs to be rewritten
and reevaluated for each new provenance query. Since Datalog evaluation can be fairly expensive,
it may be prohibitive to perform this rewriting. However, the flexibility of derivation tree
patterns means that the instrumented Datalog itself can be more efficient for certain small
patterns. In experiments in [56], it is shown that selective provenance information for a small
derivation tree pattern can be computed in a reasonable time for databases with 1.7M output
tuples. However, computing full provenance information for this instance is still prohibitively
costly, taking over 6.5 hours on a standard desktop computer.

Another important aspect of provenance in Datalog is the memory overhead. Since storing
full provenance naïvely can be rather expensive, techniques such as [69] aim to improve on
this. In [69], the authors propose using Boolean circuits to store provenance information. The
main advantage of Boolean circuits is the ability to compress repetitive parts of the formula to
reduce the memory overhead. This representation improves on previous approaches, which were
shown to “incur a super-polynomial size blowup in data complexity [69].” Meanwhile, the circuit
representation, leads to a representation polynomial in the size of the input database. Being
closely related to Boolean formulas, these circuit representations can also be used to compute
semiring annotations, as in how-provenance, using the semiring (K,∨,∧, false, true). Thus, the
Boolean circuit representation has a close correspondence with semiring provenance.

Debugging and Provenance. Provenance is a widely used technique that facilitates debug-
ging of logic programs. For example, [73] proposes an approach that uses the computation trees
produced as a side effect of top-down evaluation for debugging wrong or missing answers. For
general logic programming, algorithmic debugging [74, 32, 29] provides a framework that asks
users questions based on a debugging tree. These questions may take the form of “is node X
correct/incorrect?” and the user’s answers guide the system to further explore the relevant por-
tions of the debugging tree. In these approaches, the debugging tree is a form of provenance,
which corresponds closely with semiring provenance, where the semiring structure is the set of
debugging trees.

Outside of logic programming, approaches such as [75, 76], among others, take a similar
approach of using fragments of a computation trace to answer debugging queries. For example,
the debugger may ask whether variables have the correct value at some point in time and explore
the trace further based on answers to these questions. However, for imperative or object-oriented
languages, the notions of a trace through a computation are quite different from that in a logic
language due to the differences in the computational model.

3.2 Incremental Evaluation 27

Other Applications for Datalog Provenance. Debugging Datalog specifications is not the
only use case for provenance, with user-guided approaches [77, 78, 79, 80] for program analysis
also relying on tracking the origins of data. In [79, 77, 78], a user may tag certain static analysis
alarms to increase or decrease their importance in the next analysis cycle. In [80], the analysis
system automatically generates an appropriate abstraction by iteratively trying and refining
failing abstractions. All these approaches rely on an annotation framework for Datalog: the
user-guided systems require the user to add an annotation representing the importance of an
alarm, and the abstraction refinement system requires the system to tag failing analyses with
annotations.

3.2 Incremental Evaluation

As discussed in Section 2.4.2, incremental evaluation is becoming an important problem for
incrementally updating computations, where programs should efficiently process the insertion
or deletion of input tuples.

3.2.1 Datalog

The main body of work concerning incremental computation strategies for Datalog focuses on
rewriting techniques. For these strategies, it is noted that adding new tuples to a computation
is a trivial problem since the new tuples can be inserted with semi-naïve evaluation, then the
evaluation can be run until fixpoint [47]. Therefore, the approaches presented here focus on the
removal of tuples.

The seminal paper on these rewriting strategies is [47], which presents an algorithm to update
a materialized view for a database. The algorithm, DRed, works by deleting a superset of tuples
that need to be deleted, then rederiving those that can still be derived from the remaining tuples.

Formally, the set-up is for standard Datalog. Given a Datalog program P and an input
instance E, the result of evaluating P given E is P (E). The problem of incremental computation
can be expressed as follows. Given a set E−, denoting a set of facts to be deleted from E and
E+, a set of facts to be added to E, how do we efficiently compute P ((E \ E−) ∪ E+)?

The strategy of [47] is to produce an auxiliary Datalog program which generatesD, a superset
of all the tuples deleted by the change to E. This auxiliary program is reminiscent of semi-naïve
evaluation, and is produced as follows. Given a rule

R :− S1, . . . , Sn

the algorithm generates a set of rules

δ−R :− δ−S1, . . . , Sn
...

δ−R :− S1, . . . , Si−1, δ
−Si, Si+1, . . . , Sn

...

δ−R :− S1, . . . , δ−Sn

28 Chapter 3: Related Work

Each δ−R relation will contain a superset of tuples to be deleted from R. The union D =

∪relations R ∈ P δ
−R denotes the full set of tuples that may be deleted. Since this is an over-

approximation of the actual change, the tuples in D which are not actually deleted must then be
rederived in a subsequent step. The rederivation is a simple application of semi-naïve evaluation.

Since [47], there have been a number of further optimizations to this approach. In partic-
ular, [81] introduces the backward/forward algorithm (B/F), which aims to reduce the over-
approximation of the deletion set D by employing ideas from data provenance. For a tuple in
D, if it can be proved from tuples in E \ E−, then it should not get deleted. Therefore, the
main contribution of this work is to employ backward and forward chaining to find proofs for
tuples in E \ E−. The approach is to evaluate a rule backward. Given a tuple t, and the rule
producing t, we have an instantiation for the head of the rule. Then, the algorithm attempts
to find matching tuples for the body of the rule in the remaining instance, and if these can be
found then t is no longer considered for deletion.

The authors demonstrate that the B/F algorithm performs better than DRed in most cases
in that it will consider less candidate tuples for deletion. However, it struggles when proofs for
facts are difficult to produce, in which case DRed may perform better.

Further work on the Datalog rewriting strategies includes integrating an approach called
counting [82], in combination with either DRed or B/F. The main idea is to add a counter to
each tuple, which tracks the number of possible derivations for that tuple. By doing this, the
check for provenance is reduced to a simple check of the counter - if the counter is 0 then the
tuple can be deleted; otherwise, it cannot.

Difficulties arise, however, with recursive rules. In general, a tuple may have infinitely
many derivations with a recursive program, so care must be taken to maintain correctness and
termination. Attempts such as [82] use counting algorithms for non-recursive rules but fall back
on DRed or B/F algorithms when counters cannot be accurate due to recursion.

Alternatively, the annotation could record the provenance in the form of a Boolean expres-
sion. This approach, presented in [18], annotates each tuple with a Boolean expression, which
evaluates to true if the tuple should be kept or false if it should be deleted. This expression
contains the expressions of the dependent tuples as sub-expressions, thus encoding some no-
tion of provenance. However, for large data, the encoding of this provenance would become
prohibitively big, as the provenance of every derived tuple must be retained.

3.2.2 Differential Dataflow

Dataflow programming is a paradigm where computation is modeled as a graph describing
the path of data through the system. Data is represented as collections, which are similar
to relations in a traditional database setting. Edges represent the flow of data, and nodes
represent a single operation performed on some collections. These operations are specified in
a manner similar to relational algebra, for example, joining two collections or filtering one
collection. Through this computation model, dataflow programming has become popular for
complex parallel computations involving large-scale data.

Incremental evaluation is also crucial in dataflow programming, where updates to input data

3.2 Incremental Evaluation 29

may occur during computation. An important work in this area, Differential Dataflow, was
proposed by Frank McSherry et al. [50, 83, 84]. The approach here is to create differential
semantics for each dataflow programming operator, allowing the operator to correctly update
the output result given some changes to the input.

While similar approaches exist for databases, dataflow programming also supports recursion
(or iteration), which requires a more sophisticated treatment of differential operator semantics.
The solution proposed in [50] is that each collection is tagged with a version number, where
the version numbers are taken from some partial order. For example, a collection Aij could
depend independently on indices i and j, where i may be the previous iteration and j may be
the previous epoch (where an epoch is one cycle of adding updates and running the program).
Then, differential versions of the operators process data by taking into account the version
labels i and j to understand changes since i − 1 or j − 1 for example. These version tags are
even generalizable, so versions may contain more dimensions than 2 or different semantics than
iteration and epoch numbers which can be applied in different applications.

Using this framework, [50] develops differential semantics for common operations, including
select, join, concat, etc. Furthermore, fixpoint operators, such as extend, ingress, feedback,
and egress, also exhibit simple differential semantics. The formal mathematical background for
these differential semantics is presented in [83], which provides a framework to derive differential
semantics using abelian groups and Möbius transformations.

Furthermore, Datalog can be implemented on the Differential Dataflow framework. The
work in [52] builds Differential Datalog, a Datalog engine that compiles a Datalog program into
Differential Dataflow. The result is an engine that automatically incrementalizes a Datalog
program, allowing for more efficient processing of insertions or deletions to the Datalog input,
compared to naïvely re-executing the program with a new input.

Along with Differential Datalog, further work such as Laddder [85] have proposed extensions
to the Differential Dataflow framework to enrich the Datalog semantics that can be expressed
incrementally. In particular, Laddder proposes lattice aggregations which can be maintained in-
crementally. While extending the Differential Dataflow incremental semantics to support lattice
aggregations, Laddder also imposes looser monotonicity rules on allowable programs, permit-
ting programs that are eventually ⊑-monotonic as well as the standard ⊑-monotonic programs.
These extensions enable incremental lattice-based data-flow analyses, which were previously
challenging to implement without these semantics.

3.2.3 Databases

Similar problems of incremental view maintenance have been explored for databases in the 80s
and 90s. This was important with the advent of materialized views, which are logical tables
derived using queries from one or more base tables. Each time a base table was updated, the
materialized view should be incrementally updated efficiently.

Thus, Blakeley et al. [86] explore techniques to facilitate these efficient incremental updates.
Given a materialized view with its base tables and an update to the base tables, the aim is to
compute the result of applying the update efficiently.

30 Chapter 3: Related Work

The first stage is to determine whether the update will affect the materialized view at all. The
strategy is to construct a Boolean expression based on the updated data, and the satisfiability
of this expression tells us whether the updates are relevant or not. For example, consider a view
defined with a select operation over a Boolean expression C and the addition of a tuple t in
an update. A unification procedure would replace matching variables in C with concrete values
from t resulting in an expression C ′. If C ′ can be satisfied, then the tuple t is relevant to the
view. While in general, the satisfiability problem is NP-hard, the authors show that for the
specific class of expressions produced, satisfiability can be determined efficiently.

The incremental update of the materialized view is performed through differential semantics
for the underlying relational algebra statement. For example, a view might be defined by a join
between two relations

v = R ▷◁ S

Then, if R is updated by adding tuples from the set R+, in other words R′ = R ∪R+, then
the result of the update can be expressed as

v′ = R′ ▷◁ S

= (R ∪R+) ▷◁ S

= (R ▷◁ S) ∪ (R+ ▷◁ S)

Therefore, to compute an updated view, we may only need to consider a subset of joins
involving only the updated tuples. This technique can be easily generalized to multiple joins, and
similar strategies are used to create differential semantics for other relational algebra operations.

Further optimizations to this technique include using common subexpressions to reduce
repeated computations for updates, as presented in [87].

A formalization of the algebraic approach is presented in [88]. The concept of ∆ relations
is defined, where ∆R represents the changes in R due to an update. However, despite this
new notation, the basic ideas for incremental analysis are similar to previous works, where
incremental semantics are defined for each relational algebra operation.

An alternative viewpoint is to consider this problem from the language perspective. Rather
than dealing with relational algebra, the authors of [31] build a language similar to SQL but
focus on incremental view maintenance. Thus, the language supports specifying ‘old’ or ‘new’
versions of a relation, referring to the state before and after an update. Additionally, there
is a method presented to automatically rewrite the program’s rules into a differential form at
compile time. The differential form allows efficient insertion and deletion of data.

These techniques, along with DRed and its related improvements, have been surveyed in
[48]. The survey presents a classification taxonomy for the various strategies for incremental
view maintenance.

3.3 Debugging and Repair

As highlighted in Section 3.1, provenance is an important component of debugging logic pro-
grams. In this sub-section, we discuss the wider picture of automated debugging techniques in

3.3 Debugging and Repair 31

general, and repair techniques for logic programs.

3.3.1 Delta Debugging

Delta debugging [89, 90] is a general method for localizing faults introduced after changes are
made to a system. The approach takes the set of changes and performs a divide-and-conquer
algorithm to find a minimum subset of changes that reproduces the faults.

More formally, delta debugging follows the procedure shown in Algorithm 3. A failure-
inducing string S (for example, a program input or a program itself) is divided into n partitions.
Each partition and its complement are tested to check if the failure is reproduced. If it is, then
the relevant partition or complement is used as the basis for the next iteration.

Algorithm 3 Delta-Debugging(S), reproduced from [91]
1: n← 2

2: while true do
3: Divide S into n partitions, ∆1, . . . ,∆n

4: Let ∇1, . . . ,∇n be the complements of ∆1, . . . ,∆n respectively
5: Test each ∆1, . . . ,∆n and ∇1, . . . ,∇n

6: if all pass then
7: n← 2n

8: if n > |S| then
9: return most recent failure-inducing substring

10: end if
11: else if ∆i fails then
12: n← 2; S ← ∆i

13: if |S| = 1 then
14: return S

15: end if
16: else if ∇i fails then
17: n← n− 1; S ← ∇i

18: end if
19: end while

The simplicity of the delta debugging algorithm means that it applies to any language, as
long as the errors are monotone (i.e., any superset of a failure-inducing input also induces a
failure). Thus, delta debugging is a suitable approach for positive Datalog, which satisfies this
monotonicity property.

Along with the basic delta debugging approach, several extensions have been proposed, such
as Hierarchical Delta Debugging (HDD) [92] and Iterative Delta Debugging (IDD) [93]. HDD
applies delta debugging by splitting only on boundaries of syntax tree elements, thus producing
only syntactically valid input. While HDD is not practical for diagnosing syntax errors, it can be
more efficient (needing an order of magnitude fewer test inputs according to [92]) for diagnosing
runtime errors. HDD has also been an active area of research in recent years, with techniques

32 Chapter 3: Related Work

such as [94, 95, 96] proposing further extensions to improve the efficiency and expressive power
of HDD. Meanwhile, IDD applies the delta debugging algorithm across multiple revisions instead
of only a single change as the standard delta debugging algorithm does.

3.3.2 Logic Programming Repair

While delta debugging and its related approaches are designed to be generic and applicable to
any language, the research area of repair in databases and logic programs is highly specialized
to certain kinds of databases and queries. For example, the theoretical logic programming com-
munity has proposed abductive reasoning to interpret logic programs. The survey [97] provides
an overview of this idea, showing how abduction can be used to interpret logic programs.

Abduction is a form of reasoning in contrast to deduction and induction. For example,
consider the following example from [97]:

grass-is-wet← rained-last-night

grass-is-wet← sprinkler-was-on

shoes-are-wet← grass-is-wet

Under abductive reasoning, if we know that shoes-are-wet is true, then rained-last-night

is one possible explanation, and sprinkler-was-on is another possible explanation. One of the
common characteristics of abductive reasoning is that multiple explanations might exist, and
selecting the best of these is an important problem.

In logic programming, abduction is related to provenance, both being a way of reasoning
backward through the logic rules [98]. Therefore, abduction can be used as a tool to facilitate
program debugging and repair in the presence of violated integrity constraints [99, 100].

The database community also proposes several solutions for repairing database instances
that violate some integrity constraints. The first comes from the community of consistent query
answering [101, 102], which proposes to repair the output of a query rather than the database
instance itself. In these works, the repaired query output is computed as an intersection across all
repaired database instances, and thus, the result may change depending on the query. Another
approach is to repair the database instance itself, using techniques such as abduction [103].

In summary, techniques such as provenance and abduction are important in the community
of database repair. However, this field is largely studied at a theoretical level, with no practical
implementations being widely adopted to the best of our knowledge.

3.3.3 Synthesis

In a similar vein to logic programming repair, which deals with repairing input databases, there is
also a body of work in Datalog synthesis, which can be seen as an approach to repairing Datalog
rules. The general framework for synthesis is where an input database and a desired output
database are known, and the corresponding Datalog program should be synthesized through
automated or semi-automated methods.

3.3 Debugging and Repair 33

One major body of work has been in syntax-guided synthesis for Datalog programs [104,
105, 6]. In this framework, the user provides input-output examples, along with a syntactic
component to guide the synthesis, usually in the form of a set of candidate rules or meta-rules
from which to generate candidate rules. Then, the synthesis problem is to select a subset of
candidate rules that correctly compute the given outputs from the corresponding inputs. The
approach in [104] uses refinement and active learning techniques on Datalog syntax to traverse
the space of possible programs. Meanwhile, [105] uses numerical methods, where each rule is
associated with a weight between 0 and 1. Then, optimization methods such as Newton’s root-
finding algorithm are employed to find a subset of rules that minimizes the difference between
output tuples and their expected outcomes. Finally, [6] uses a combination of provenance, delta
debugging, and SAT solving techniques to perform a counter-example guided search to find a
correctly synthesized program.

Another body of work has been in inductive logic programming (ILP) [106, 107, 108], which
introduces inductive reasoning as a framework to describe the problem of inducing hypotheses
given observations. Inductive logic programming algorithms usually consist of two parts: a
hypothesis search and a hypothesis selection. Modern synthesis systems, such as [109] based on
ILP have been introduced; however, their practicality is limited for large instances with recursive
structure.

34 Chapter 3: Related Work

Chapter 4

Large-Scale Provenance in Datalog

This chapter outlines our approach for efficiently computing provenance information in Datalog
and showcases how provenance enables easier debugging for Datalog programs. We use prove-
nance in the form of proof trees, and we present a novel encoding that enables a bottom-up
Datalog evaluation to produce proof trees with small runtime overheads.

This work was published in TOPLAS 2020, in the paper “Debugging Large-Scale Datalog:
A Scalable Provenance Evaluation Strategy” [4].

This chapter is organized as follows: Section 4.2 motivates our provenance method and
describes its use in a real-world program analysis use case. In Section 4.3, we detail the theo-
retical basis of our approach regarding the provenance evaluation strategy and the provenance
queries which construct proof trees for tuples. We also demonstrate the minimality properties
and present the practical solution that results from this theory. In Section 4.4, we detail the
implementation of our system in Soufflé. Finally, in Section 4.5, we present experiments that
show the feasibility of our provenance system, and we summarize in Section 4.6.

4.1 The Datalog Debugging Problem

As discussed in Chapters 2 and 3, Datalog has become a widely adopted logic programming
language for various analysis tasks. These real-world applications of Datalog are often large,
containing hundreds or thousands of potentially mutually recursive rules, with tens of millions of
input and output tuples. Therefore, as with any complex piece of software, there is the potential
of introducing bugs and faults into the Datalog program. In particular, a fault in a Datalog
program typically manifests in one of two ways: (1) an unexpected output tuple appears, or
(2) an expected output tuple does not appear. These bugs may appear due to a fault in the
input data or a fault in the logic rules. Both scenarios call for mechanisms to explain how an
output tuple is derived or why the tuple cannot be derived from the input tuples. One way to
approach debugging for Datalog is through proof trees. In the case of explaining the existence
of an unexpected tuple, a proof tree describes formally the input tuples and the sequence of
rule applications involved in generating the tuple. On the other hand, a failed proof tree, where
at least one part of the proof tree doesn’t hold, may explain why an expected tuple cannot
be derived in the logic program. These proof trees can be seen as a form of provenance, an

36 Chapter 4: Large-Scale Provenance in Datalog

explanation vehicle for the origins of data [59, 55].

In the presence of complex Datalog programs and large datasets, Datalog debugging becomes
an even bigger challenge due to the size and complexity of proof trees. Section 3.1 discusses
several previous approaches to debugging Datalog programs, including provenance-based debug-
ging, which stores a full trace of execution during the Datalog evaluation [71, 56, 57]. Using
these techniques, Datalog users follow a debugging cycle which allows them to find anomalies
in the input relations or the logic rules. In such setups, the typical debugging cycle comprises
the phases of (1) defining an investigation query, (2) evaluating the logic program to produce
provenance witness, (3) investigating the faults based on the provenance information, and (4)
fixing the faults. For complex Datalog programs, the need for re-evaluation for each investigation
is impractical. For example, Doop [20] with a highly precise analysis setting may take multi-
ple days to evaluate for medium to large-sized Java programs. Although these state-of-the-art
approaches scale for smaller database querying use cases, such techniques are not practical for
industrial-scale static analysis problems.

A further difficulty in developing debugging support for Datalog is providing understandable
provenance witnesses. Use cases such as program analysis tend to produce proof trees of very
large height. For example, investigations on medium-sized program analyses in Doop have
minimal height proof trees of over 200 nodes. Therefore, a careful balance must be struck between
providing enough information and readability for the user. Our approach limits information
overload and handles large proof trees by allowing users to explore relevant fragments of the
proof trees interactively.

This chapter presents a novel debugging approach that targets Datalog programs with char-
acteristics of those found in static program analysis. Our approach scales to large dataset and
ruleset sizes and provides succinct and interactively navigable provenance information.

The first aspect of our technique is a novel provenance evaluation strategy that augments the
intensional database (IDB) with Proof Annotations and hence allows fast proof tree exploration
for all debugging queries without the need for re-evaluation. The exploration uses the proof
annotations to construct proof trees for tuples lazily, i.e., a debugging query for a tuple produces
the rule and the subproofs of the rule. The subproofs, when expanded in consecutive debugging
queries, will produce a minimal height proof tree for the given tuple. Our system also supports
non-existence explanations of a tuple. In this case, proof annotations are not helpful since
they cannot describe non-existent tuples. Thus, we adopt an approach from [110] to provide a
user-guided procedure for explaining the non-existence of tuples.

We implement the provenance evaluation strategy in the synthesis framework of Soufflé [35],
using specialized data structures and an interactive debugging query system for each logic pro-
gram. Our approach is tightly integrated into the Soufflé engine and achieves higher performance
than existing provenance approaches when more than one provenance query is run. We demon-
strate the feasibility of our technique through the complex Java points-to framework, Doop,
running the Java DaCapo benchmark suite, which produces tens of millions of output tuples. We
demonstrate that the initial implementation of our novel provenance method incurs a runtime
overhead of 1.31×, and memory consumption overhead of 1.76× on average.

4.2 Motivation and Problem Statement 37

Our contributions in this work are as follows:

• a provenance evaluation strategy for Datalog programs - defining a new evaluation domain
based on a provenance lattice which extends the standard Datalog subset lattice with
proof annotations, and leveraging parallel bottom-up evaluation to give minimal height
proof trees,

• a provenance query system for constructing minimal height proof trees utilizing proof an-
notations, allowing effective bug investigation with a minimum number of user interactions,

• an efficient and scalable integration of the proof tree generator system into Soufflé, using
specialized data structures for computing and storing proof annotations, and

• large-scale experiments using the Doop program analysis framework with DaCapo bench-
marks with tens of millions of tuples, measuring on average 1.31× overheads for runtime
and 1.76× overheads for memory.

4.2 Motivation and Problem Statement

Real-world Datalog programs for applications such as program analysis can often contain up
to hundreds of mutually recursive rules. With such complex applications, bugs are a common
occurrence during the development cycle of a Datalog program. Buggy Datalog code may
manifest itself in two main ways: (1) it produces an unexpected output tuple, or (2) it fails to
produce an expected output tuple.

A common approach to characterize the evaluation of a Datalog program is through proof
trees. A proof tree for a tuple describes the derivation of that tuple from input tuples and
rules. During the debugging cycle, the presence of any unexpected tuples can be explained by
producing a valid proof tree, where all nodes of the proof tree hold. On the other hand, a
failed proof tree, where at least one part of the proof tree fails to hold, provides valuable insight
into why a tuple is not produced. Therefore, both valid and failed proof trees are critical for
investigation into anomalies.

Note that there could potentially be an infinite number of valid proof trees to explain any
given tuple. However, Datalog developers desire concise proof trees such that the faulty behavior
of the logic program is revealed quickly. In this section, we describe how minimal height proof
trees can be used to debug a Datalog program and an overview of our method for generating
minimal height proof trees for output tuples.

4.2.1 Use Case: Program Analysis

Points-To Analysis

Recall, from Section 2.3, our running example of computing a pointer analysis in Datalog. In
this example, a source program (Figure 2.2a) is encoded as a set of EDB input tuples (Fig-
ure 2.2b). Then, the Datalog program (Figure 2.2c) computes the output relations vpt, alias,
and safevar.

38 Chapter 4: Large-Scale Provenance in Datalog

Minimal Height Proof Trees. The example in Figure 2.2 computes the output relation
alias that captures the alias relationship of any two variables. One such output tuple is
alias(userSession,ins), which a user may wish to investigate the existence of. In other
words, the user may wish to show how the analysis derives alias(userSession,ins) from the
input data via the rules. The proof tree in Figure 4.1 shows that alias(userSession,ins) is
derived by rule r4 using the facts vpt(userSession,L3) and vpt(ins,L3) where the constraints
userSession != ins and L3 != nullptr are satisfied. This outcome is expected since it tells
us that userSession and ins may point to the same object (L3 in this case), and thus they may
alias.

assign(userSession,ins)
new(ins,L3) r1
vpt(ins,L3)

r2
vpt(userSession,L3)

new(ins,L3) r1
vpt(ins,L3)

userSession ̸= ins

L3 ̸= nullptr
r4

alias(userSession,ins)

Figure 4.1: Full proof tree for alias(userSession,ins)

While the above proof tree explains the existence of the query tuple, it is also important that
computed proof trees are of minimal height. Figure 4.2 demonstrates what can happen if this
minimality constraint is not enforced. Imagine that the line ins = userSession; was added to
the source program, resulting in the EDB tuple assign(ins,userSession). Then, this circular
assignment means that the tuple vpt(ins,L3) can be derived in an arbitrary number of rule
applications.

assign(ins,userSession)
assign(userSession,ins)

. . .
vpt(ins,L3)

r2
vpt(userSession,L3)

r2
vpt(ins,L3)

Figure 4.2: Infinitely many derivations for vpt(ins,L3), resulting from the circular assignment
in line 11 and a newly inserted line ins = userSession; in the input program

Thus, even for this small example, there are infinitely many valid proof trees for the tuple
vpt(ins,L3). A provenance system ought to produce the most concise proof tree so that an end
user can explore the tree to understand the derivation of a tuple in the least number of steps.

Proof Tree Fragments for Debugging. Suppose a Datalog user discovers an unexpected
tuple in the output, which indicates that a fault exists somewhere in the logic program. The
aim is to investigate the root cause of this fault. Since proof trees provide explanations for the
existence of a tuple, the proof tree of an unexpected tuple will help identify the fault in the logic
program.

An example fault could be if rule r2 was altered as follows,

vpt(Var,Obj) :- assign(Var,Var2), vpt(Var3,Obj).

4.2 Motivation and Problem Statement 39

Note that the propagation of pointer information through an assignment no longer holds,
and the assign and vpt in the body of the rule are no longer related to each other. Such a fault
may have been introduced by a minor typo, and as a consequence, the analysis would produce
the extra tuple alias(userSession,admin). This additional tuple becomes a symptom of the
fault, which can be diagnosed by using its proof tree to highlight the root cause of the fault.

However, in practice, a full proof tree may be too large to provide a meaningful explanation
even if it is of minimal height, and as experiments in Section 4.5 show, proof trees for real-world
program analyses (e.g., Doop) can exceed heights of 200. Thus a Datalog user may want to
explore only relevant fragments of it interactively. A fragment of a proof tree is a partial subtree,
which consists of some number of levels. For instance, we may construct fragments comprising
of 2 levels to explore only parts of the proof tree that are relevant.

t

tnt1 . . .

x

Figure 4.3: Interactive exploration of fragments of a proof tree for t

We illustrate the exploration of fragments of the proof tree in Figure 4.3. In the figure, tuple
t denotes the symptom of the fault, i.e., t is an unexpected tuple in the output. The aim is to
explore the proof tree for t to find the root cause for this fault. In our example, the user follows
the scent of the fault by expanding proof tree fragments that show anomalies. This process
produces a path of exploration in the proof tree. The path of exploration discovers the root
cause of the fault efficiently, without constructing and displaying the full proof tree of an output
tuple.

Concretely, we may wish to explain the tuple alias(userSession,admin) which is pro-
duced as a result of the fault. Figure 4.4 illustrates the exploration of an explanation for
alias(userSession,admin) by generating proof tree fragments of 2 levels at a time. The user
generates the first fragment, decides that vpt(userSession,L1) is the most relevant explana-
tion for the fault, and continues down this path. As a result, the root cause (for example, the
erroneous rule r2) is discovered after two fragments. This interaction mechanism also justifies
the choice to minimize the height of proof trees. By doing this, we minimize the number of user
interactions (i.e., proof tree fragments) required to discover the root cause for an anomaly.

Debugging Non-Existent Tuples. On the other hand, the non-existence of a tuple may
also indicate a fault in the Datalog program. Moreover, when the Datalog program includes
negations, the non-existence of an expected tuple may lead to the existence of an unexpected
tuple, and vice versa. In the running example, the input data may be missing the tuple

40 Chapter 4: Large-Scale Provenance in Datalog

assign(userSession,ins) vpt(admin,L1)
r2

vpt(userSession,L1)

vpt(userSession,L1) vpt(admin,L1)
userSession ̸= admin

L1 ̸= nullptr
r4

alias(userSession,admin)

Figure 4.4: Exploring the proof of alias(userSession,admin) to find the erroneous rule r2

assign(userSession,ins). In this case, the tuple vpt(userSession,L3) would not be pro-
duced with the altered input data. However, a developer would expect that the assignment in
line 11 would cause the tuple to exist, and thus may wish to examine the reason for the tuple’s
non-existence.

Logically, the non-existence of a tuple results from there being no valid proof tree for that
tuple. Therefore, to ‘explain’ the non-existence of a tuple, we must show that every attempt to
construct a proof tree eventually fails. However, automated techniques are not tractable since
this is an infinite search space. Therefore, we adopt a semi-automated approach from [110],
using algorithmic debugging ideas [29] to ask the user queries to aid the construction of a single
failed proof tree. Such a failed proof tree may provide valuable insight into the non-existence of
the tuple. Further details for debugging non-existent tuples are presented in Section 4.3.4.

4.2.2 Proof Trees and Problem Statement

Recall, from Section 2.2, the terminology and syntax of Datalog. We use this notation, with one
additional notation to represent constraints and negations. With this additional notation, a Dat-
alog rule is of the form R(X) :− R1(X1), . . . , Rn(Xn), ψ(X1, . . . , Xn). The term ψ(X1, . . . , Xn)

denotes a conjunction of constraints, including arithmetic constraints (such as less than), or
negations.

Given a Datalog program P , an input instance EDB of P , and a tuple t produced by P ,
our debugging problem is to find a proof tree of minimal height for t. We define a proof tree as
follows:

Definition 4.2.1 (Proof Tree). Let P be a Datalog program, and let EDB be an input instance.
A proof tree τt for a tuple t computed by P is a labeled tree where (1) each vertex is labeled with
a tuple, (2) each leaf is labeled with an input tuple in EDB, (3) the root is labeled with t, and
(4) for a vertex labeled with t0, there is a valid instantiation t0 :− t1, . . . , tn of a rule r in P such
that the direct children of t0 are labeled with t1, . . . , tn. Moreover, the vertex is associated with
r.

A proof tree for t can be viewed as an explanation for the existence of t, by showing how it
is derived from other tuples using the rules in the Datalog program. To formalize the problem
statement, we characterize proof trees of minimal height. Note that the set of proof trees for a
Datalog program could be constructed inductively by the height of the trees. We denote τt to be
a proof tree for tuple t and T k to be the set of proof trees of height at most k. This construction

4.3 A New Provenance Method 41

leads to a convenient description of what it means for a proof tree to be of minimal height.

Definition 4.2.2. We define the set of all proof trees inductively. Let T 0 = {τt | t ∈ EDB}
be the set of proof trees for tuples in the input instance. Then, define T k in terms of T k−1:
T k =

{
τt | t :− t1, . . . , tn is a valid instantiation and ∀ti : ∃τti ∈ T k−1

}
Then, T =

⋃
i≥0 T

i is
the set of all proof trees produced by the program P .

Note that each T k consists of proof trees of height at most k since if t :− t1, . . . , tn is an
instantiation of a rule, then the height of the proof tree for t is equal to the maximum height of
the proof trees for t1, . . . , tn plus 1. By defining the set of proof trees inductively, a proof tree
of minimal height for a given tuple t has height given by

min
{
k ≥ 0 | ∃τt ∈ T k

}
.

Intuitively, this means that a proof tree for a tuple t is of minimal height if there does not
exist another valid proof tree with a smaller height. We emphasize that a valid proof tree must
exist since we have assumed that tuple is in the IDB of the Datalog program, and therefore
its existence can be proved. Based on this inductive construction of proof trees, we reduce the
problem of generating a fragment of a proof tree into the following incremental search problem.

Problem Statement. Let P be a Datalog program, and I be the instance computed by P .
Given a tuple t ∈ I, find the tuples t1, . . . , tn such that t :− t1, . . . , tn is a valid instantiation of
a rule in P leading to a minimal height proof tree.

t

t1 tn. . .
minh

Figure 4.5: One level of a proof tree of minimal height for t

The problem statement is illustrated in Figure 4.5, where tuples t1, . . . , tn form the direct
children of t in a minimal height proof tree. We can also denote t1, . . . , tn to be a configuration
of the body of the corresponding rule. If this problem statement can be solved, such a solution
can be applied recursively to construct the subtrees rooted at each ti, which would then form
valid proof trees for those tuples. Thus, this recursive construction solves the original problem
of constructing a fragment of the proof tree of minimal height. Once a certain number of levels
have been constructed, or if the only remaining leaves are in the EDB (characterized by having
a proof tree consisting of only a single node), then the fragment is complete.

4.3 A New Provenance Method

A simple, partial solution to the problem might be to evaluate the Datalog program using a
standard evaluation strategy, then generate a proof tree by brute-force searching for a matching

42 Chapter 4: Large-Scale Provenance in Datalog

configuration for the body of a rule. However, this is an unfeasible approach for real-world
problems where the resulting instance may contain millions of tuples, and there are also no
guarantees that the proof trees produced in this manner are of minimal height. Alternatively,
the Datalog evaluation strategy could be augmented to store minimal height proof trees as part
of the computation; however, this is inefficient and would quickly run out of memory on even
moderately sized instances.

Moreover, the two main evaluation strategies for Datalog, bottom-up and top-down, are
unsuitable for solving this problem on their own. Bottom-up evaluation is an efficient method
for generating tuples but does not store any information related to proof trees. On the other
hand, top-down evaluation does compute proof trees as part of its execution, but there are no
guarantees for minimality of height. Additionally, to prove the existence of a particular tuple
requires proving the existence of every intermediate tuple up to the input tuples, and thus the
problem of generating only fragments of proof trees cannot be solved by top-down. Therefore,
we present a hybrid solution for generating proof trees, consisting of a provenance evaluation
strategy based on bottom-up evaluation, plus a debugging query mechanism to construct proof
trees.

EDB

Datalog
Spec

Provenance
Evaluation

IDB

Proof An-
notations

Proof Tree
Generator

Query

Proof
Tree

Fragment

Pre-processing Datalog evaluation Proof tree exploration

Figure 4.6: Synthesized Proof Tree Generator system

We summarize the system in Figure 4.6. The Datalog program and input tuples (EDB) are
the input into the system. The provenance Datalog evaluation generates a set of tuples (IDB)
alongside proof annotations for these tuples. For each tuple, the annotation stores two numbers:
one referring to the rule generating that tuple and one referring to the height of a minimal
height proof tree for that tuple. Using these annotated tuples as input, the interactive proof
tree generator system allows the user to query for a proof tree fragment for any tuple in the
IDB.

The proof tree generator is at the core of the interactive exploration of proofs for tuples. A
user queries for a fragment of a proof tree, e.g., two levels of a proof tree for vpt(ins,L3), and
the system returns the corresponding result. This system can answer any number of queries, and
the user can query for any fragment of the proof tree for any tuple. As previously mentioned, this
allows the user to interactively explore the proof for a tuple and find a meaningful explanation
for a tuple.

The provenance evaluation strategy resembles a pre-computation step for debugging. The
evaluation is performed only once, but the IDB with proof annotations can subsequently answer
any debugging query using the same IDB resulting from evaluation. The ability to answer

4.3 A New Provenance Method 43

any debugging query without re-evaluation is an advantage over other selective provenance
systems [56, 71], where the query is given prior to evaluation, which is then instrumented based
on the query, and thus evaluation must be performed for each different query.

4.3.1 Standard Bottom-Up Evaluation

The basis of our approach is the standard bottom-up evaluation strategy for Datalog programs
[12]. The computational domain of standard bottom-up evaluation is the subset lattice consisting
of sets of tuples, denoted instances I. Recall, from Section 2.4.2, that the naïve algorithm for
evaluation is based on the immediate consequence operator, ΓP , which generates new tuples by
applying rules in the Datalog program to tuples in the current instance.

ΓP (I) = I ∪ {t | t :− t1, . . . , tn is a valid instantiation of a rule in P with each ti ∈ I}

The result of Datalog evaluation is attained when ΓP reaches a fixpoint, i.e., when ΓP (I) = I.
Note that this evaluation appears closely related to the inductive construction of proof trees,
and indeed the set of tuples represented by T i is equal to the set of tuples generated by the i-th
application of ΓP .

However, in practice, naïve evaluation is sub-optimal, and so the standard implementation
is semi-naïve. With semi-naïve evaluation, a Datalog program is stratified, and each stratum
is evaluated in order based on the dependency graph. Semi-naïve evaluation also uses a new
knowledge optimization, which improves efficiency over naïve evaluation.

4.3.2 Provenance Evaluation Strategy

These standard bottom-up evaluation semantics are extended to compute a minimal height proof
tree for each tuple – our extended semantics store proof annotations alongside the original tuples.
In particular, for each tuple, the annotations are the height of the minimal height proof tree and
a number denoting the rule which generated the tuple. By using this extra information, we can
efficiently generate minimal height proof trees to answer provenance queries (see Section 4.3.3).

In the context of semi-naïve evaluation, particularly with stratified Datalog, we describe the
provenance evaluation strategy here for a single stratum (i.e., a single fixpoint computation). The
resulting correctness properties translate directly to the evaluation of the full Datalog program
since correctness holds for every stratum in the evaluation.

The rule number annotation can be computed in a straightforward manner during bottom-up
evaluation. With bottom-up evaluation, a new tuple t is computed if there is a rule rk: R(X) :−
R1(X1), . . . , Rn(Xn), ψ(X1, . . . , Xn) and a set of tuples t1, . . . , tn such that t :− t1, . . . , tn forms
a valid instantiation of the above rule. If this is the case, then the rule firing of rk generates t,
and thus the identifier r (t) takes on the value of k as the rule number annotation for t, thus
tracking which rule is fired to generate that tuple.

However, the height annotations are more involved and relate closely to the semantics of
bottom-up evaluation. Thus, we must develop a formalism for the height annotations to ensure
that it correctly computes the height of the minimal height proof tree for each tuple. To formalize
tuples with height annotations, we define a provenance lattice as our domain of computation,

44 Chapter 4: Large-Scale Provenance in Datalog

vpt(u,L1) ↔ (vpt(u,L1), 2) ↔
assign(u,ins)

new(admin,L1) r1
vpt(admin,L1)

r2
vpt(u,L1)

2

Figure 4.7: Connecting a tuple to a proof tree via a height annotation

which extends the standard subset lattice with proof annotations. An element of the provenance
lattice is a provenance instance.

Definition 4.3.1 (Provenance Instance). A provenance instance is an instance of tuples I along
with a function

h : I → N

which provides a height annotation of each tuple in the instance. We denote a provenance
instance to be the pair (I, h).

The aim of these height annotations is to connect a tuple to its proof tree, as depicted in
Figure 4.7. The middle value is a tuple along with its height annotation, which is an example
of an augmented tuple in a provenance instance. The corresponding proof tree on the right has
height matching this annotation.

Similar to the subset lattice of standard bottom-up evaluation, the domain of provenance
evaluation should also form a lattice, in our case, based on the subset lattice of standard bottom-
up evaluation, but with elements being provenance instances rather than instances. We denote
this to be the provenance lattice L, where elements are provenance instances. The ordering ⊑
of elements in the lattice is defined by:

(I1, h1) ⊑ (I2, h2) ⇐⇒ I1 ⊆ I2 and ∀t ∈ I1 : h1(t) ≥ h2(t)

Intuitively, this ordering specifies that an augmented instance (I1, h1) is ‘less than’ another
augmented instance (I2, h2) if all tuples in I1 also appear in I2, with larger or equal height
annotation. In L, the bottom element is the empty instance, and a join between two instances
(I1, h1) and (I2, h2) is the instance (I1 ∪ I2, h′), where

h′ (t) =


h1 (t) if t ∈ I1 \ I2
h2 (t) if t ∈ I2 \ I1
min (h1 (t) , h2 (t)) if t ∈ I1 ∩ I2

Under this definition, moving ‘up’ the lattice towards the top element results in augmented
instances with more tuples and smaller height annotations. This property guarantees the mini-
mality of these height annotations since a bottom-up Datalog evaluation is equivalent to applying
a monotone function to move ‘up’ a lattice.

The property that ⊑ is a valid partial order is essential to demonstrate that standard prop-
erties of Datalog evaluation hold.

Lemma 4.3.2. The relation ⊑ is a partial order. Therefore, L is a lattice.

4.3 A New Provenance Method 45

In a similar fashion to the immediate consequence operator ΓP operating on the subset
lattice of Datalog instances, provenance evaluation is achieved with a consequence operator TP
operating on the provenance lattice. The result of evaluation is reached when TP reaches a
fixpoint, i.e., when TP ((I, h)) = (I, h). The main property TP is that once a fixpoint has been
reached, the proof tree height annotations are minimal, and they correspond to the heights of
the smallest height proof trees.

The consequence operator TP is defined in terms of the ΓP operator:

Definition 4.3.3 (Consequence operator). The consequence operator, TP , generates a new
provenance instance:

TP ((I, h)) =
(
ΓP (I) , h′

)
where h′ is defined as follows. For any tuple t ∈ ΓP (I), let

Gt = {(t1, . . . , tn) | t :− t1, . . . , tn is a valid rule instantiation with each ti ∈ ΓP (I)}

be the set of all configurations of rule bodies generating t. Note this may be empty in the case of
EDB tuples. Then,

h′ (t) =

h (t) if Gt = ∅

min
(
h (t) ,ming∈Gt {maxti∈g {h (ti)}+ 1}

)
otherwise

The generation of new tuples behaves in the same way as ΓP . To illustrate the height
annotations, consider the rule instantiation vpt(b, l1) :− (assign(b, a), 0), (vpt(a, l1), 1), with
height annotations written alongside body tuples for convenience. From this rule instantiation,
we would generate the tuple vpt(b, l1) with height annotation max (0, 1) + 1 = 2. However,
the instantiation vpt(b, l1) :− (load(b, c, f), 0), (store(c, f, a), 0), (vpt(a, l1), 1), (alias(c, c), 2)

would also generate vpt(b, l1), but with height annotation max (0, 0, 1, 2)+1 = 3. The resulting
instance after applying TP will contain only the smaller annotation, and thus the resulting
provenance tuple is (vpt(b, l1), 2).

Height Updates. Note that this semantics allow for the update of the height annotation for
a tuple t ∈ I. If TP (I, h) = (ΓP (I) , h′) results in h′ (t) < h (t), then the height annotation of t
is updated. An update may happen if TP generates new tuples which form a valid configuration
of a rule body generating t, with lower height annotations than a previous derivation.

We illustrate this definition of provenance evaluation strategy using the running example. As
before, we denote (t, h) to be a tuple t with height annotation h. To highlight the importance of
updating height annotations, we introduce a pre-processing step to generate the input instance
for the points-to analysis. For example, a situation may arise in points-to analysis where a
subclass constructer takes a superclass object as a parameter:

a2 = new O2(a);

a3 = new O3(a2);

46 Chapter 4: Large-Scale Provenance in Datalog

In this situation, a store (e.g. a.f = b;) may also imply a2.f = b; and a3.f = b;. For
the points-to analysis, a pre-processing step may be required to unroll the store and assign
statements through the class hierarchy:

store(P,F,Q) :- instanceof(P,SuperP), store(SuperP,F,Q).

assign(Var1,Var2) :- instanceof(Var2,SuperVar2), assign(Var1,SuperVar2).

As a result of the recursive pre-processing step, the input instance to the points-to analysis
fixpoint contains tuples with different height annotations. Figure 4.8 shows the derived vpt

relation under the fixpoint computation with the provenance evaluation strategy. Importantly,
note that the height annotation for vpt(b,L1) is updated in iteration 3. For the initial deriva-
tion in iteration 2, vpt(b,L1) is derived from vpt(b,L1) :- assign(b,a), vpt(a,L1), giving
a height annotation of 4. In iteration 3, however, vpt(b,L1) :- assign(b,c), vpt(c,L1) be-
comes a valid instantiation, therefore the height annotation of vpt(b,L1) is updated to be 3.
Therefore, this example demonstrates that the height annotations may be updated after they
are initially computed, which is essential to ensure minimality.

Input:

{(new(a,L1), 0), (assign(b,a), 3), (new(c,L3), 0), (assign(b,c), 1),

(assign(c,a), 1), (load(b,c,f), 0), (assign(a,b),2)}

Fixpoint iterations:

i0 : ∅

i1 : {(vpt(a,L1), 1), (vpt(c,L3), 1)}

i2 : {(vpt(a,L1), 1), (vpt(c,L3), 1), (vpt(b,L1), 4), (vpt(b,L3), 2), (vpt(c,L1), 2)}

i3 : {(vpt(a,L1), 1), (vpt(c,L3), 1), (vpt(b,L1), 3), (vpt(b,L3), 2), (vpt(c,L1), 2)}

i4 : {(vpt(a,L1), 1), (vpt(c,L3), 1), (vpt(b,L1), 3), (vpt(b,L3), 2), (vpt(c,L1), 2)}

Figure 4.8: IDB relation vpt in each iteration of the fixpoint computation for the example
Datalog program

It remains to be shown that the provenance evaluation strategy is correct, i.e., that TP
terminates and results in the same set of tuples as ΓP . Additionally, we must show that the
height annotations resulting from the provenance evaluation strategy is minimal.

Lemma 4.3.4. The tree consequence operator TP computes the same tuples as ΓP at fixpoint,
i.e.

1. ∃k s.t. TP
(
T k
P ((I, h))

)
= T k

P (I, h), and

2. T k
P (I, h) =

(
Γk
P (I) , hk

)
for some level annotation function hk

4.3 A New Provenance Method 47

Proof. By definition, TP generates tuples in the same fashion as ΓP . Since ΓP always reaches a
fixpoint, say after l iterations, i.e., ΓP

(
Γl
P (I)

)
= Γl

P (I), we have

T l
P ((I, h)) =

(
Γl
P (I) , hl

)
Any further applications of TP do not change the set of tuples since ΓP has already reached a
fixpoint. Thus, after l iterations, TP computes the same tuples as ΓP .

If there exists a k ≥ l such that TP reaches fixpoint after k iterations, then the theorem is
proved. Consider applying TP to

(
Γl
P (I) , hl

)
. The set of tuples will not change. For any tuple

t ∈ Γl
P (I), the height annotation can only decrease as a result of applying TP since TP takes the

minimum height over all rule configurations generating t and hl (t) also must result from such a
configuration.

The height annotation is bounded from below by 0 since EDB tuples have non-negative
annotations, and each subsequently generated tuple has increasing annotation. Therefore, ap-
plying TP monotonically decreases the height annotation of t, which is bounded from below, so
eventually, a fixpoint must be reached. Since this holds for all tuples in Γl

P (I), TP must reach
a fixpoint after k ≥ l iterations.

We have established that the provenance evaluation strategy terminates and computes the
same set of tuples as standard bottom-up evaluation. It remains to be shown that the proof
height annotations are minimal, i.e., that they reflect the real height of the minimal height proof
tree for each tuple, and also that they correspond to real proof trees. The property of minimal
height annotations is the major result of this section since it demonstrates that our method
generates proof trees of minimal height.

Theorem 4.3.5. Let T k
P ((I, h)) =

(
Γk
P (I) , hk

)
be the resulting instance at fixpoint of TP . Then,

for any arbitrary tuple t ∈ Γk
P (I),

1. there does not exist any sequence of tuples t1, . . . , tn such that t :− t1, . . . , tn is a valid
instantiation of a rule in P with each ti ∈ Γk

P (I) and h (t) > max {h (t1) , . . . , h (tn)}+ 1,
and

2. there is a valid proof tree for t with height hk (t)

Proof. The proof for part 1 is by contradiction. Assume such a sequence of tuples t1, . . . , tn
exists. Consider applying TP to the instance.

TP
(
Γk
P (I) , hk

)
=

(
Γk
P (I) , hk+1

)
with hk+1 (t) = ming∈Gt

{
maxti∈g

{
hk (ti)

}
+ 1

}
by definition of TP . The set of tuples does

not change since we assume that a fixpoint of ΓP has already been reached.
Since the sequence t1, . . . , tn is a valid rule body configuration generating t, it is an element

of Gt , and therefore is considered when updating the height annotation of t. Since the height
annotation resulting from this sequence is lower than hk (t), the update will happen, and thus
a fixpoint has not yet been reached.

48 Chapter 4: Large-Scale Provenance in Datalog

Thus, we have a contradiction, and so such a sequence producing a lower height annotation
cannot exist.

The proof for part 2 is by induction on the height annotation of t. Let h = hk (t) for
simplicity.

If h = 0, then t is in the EDB. In this case, the proof tree with a single node corresponding
to t is a valid proof tree. Otherwise, for h > 0, assume the hypothesis is true for all tuples with
height annotation less than h. By definition of TP , there exists a sequence t :− t1, . . . , tn such
that

h = max
(
hk (t1) , . . . , h

k (tn)
)
+ 1

By the assumption, there are valid proof trees for each ti of height hk (ti). We can generate
a proof tree as follows:

. . .
t1 . . .

. . .
tn

t

where each . . . represents the subtree forming a valid proof tree for each ti. This resulting proof
tree has height

max
(
hk (t1) , . . . , h

k (tn)
)
+ 1

which equals h. This forms a valid proof tree for t of height hk (t).

We have shown the correctness and minimal height annotations of the provenance evaluation
strategy for a single fixpoint computation. To evaluate a stratified Datalog program in a semi-
naïve fashion, each stratum is evaluated as a separate fixpoint using the provenance evaluation
strategy. The correctness of the evaluation of a full Datalog program follows from the correctness
of each fixpoint evaluation.

Constraints and Negation. While the above sections describe the provenance evaluation
strategy for tuples, Datalog programs can also contain constraints and negations. However,
constraints and negations need no special treatment and can be evaluated as they are in standard
Datalog. The truth value of a constraint depends only on the values in the constraint and does
not need to be explained further. For example, a constraint 1 ̸= 2 is always true and does not
need to be explained in a proof tree. Similarly, under stratified Datalog, a negation can also be
asserted to be true. While a negation might be explained by enumerating the relevant relation to
assert that the negated tuple does not exist, this is impractical in practice. Therefore, a negation
such as !vpt(ins,L4) is be asserted to be true with no further explanation in the proof tree.

Complexity of Provenance Evaluation Strategy. In this section, we discuss the complex-
ity of the provenance evaluation strategy. We characterize this complexity by the number of
rule firings during evaluation. With standard bottom-up evaluation, we say that a rule is fired
if it generates a new tuple. Therefore, for each tuple generated by the Datalog program, there is
exactly 1 rule firing. However, with the provenance evaluation strategy, a rule is also fired if it

4.3 A New Provenance Method 49

results in an update for the height annotation of a tuple. Therefore, we consider the number of
updates performed during evaluation of the program as a characterization of the extra amount
of work done by provenance evaluation compared to standard bottom-up evaluation.

Theorem 4.3.6. An upper bound for the number of updates performed is O (n×maxh), where
maxh denotes the maximum attained height annotation for any tuple during evaluation and n
the number of tuples generated by the program.

Proof. To prove this, we need to show two things: (1) that it is a true upper bound, and (2)
that it is a tight bound.

To prove (1), consider a tuple t attaining a height annotation of maxh. Its annotation may
only be updated if there is a valid derivation for t with a lower height. In the worst case, in
each update, we reduce the annotation by 1, and thus we must perform maxh updates to t.
Considering all tuples produced by the program, we may update all tuples in this way in the
worst case, and therefore, we have O (n×maxh) updates.

To prove (2), we show an example attaining the upper bound, in Figure 4.9. In this example,
the maximum height annotation is 2k, and the tuple reach(a, e) will be updated k times as new
derivations are computed using nodes in the bottom chain. Furthermore, each tuple reach(a, x)
corresponding to nodes x in the ‘leg’ must be updated O (k) times as the tuple reach(a, e) is
updated. Since there are k nodes in the leg, each of which is updated O (k) times, we have in
total O

(
k2
)

updates, which coincides with the upper bound. Therefore, this upper bound is
tight.

a

e

0 0

0 0

2k

2k
−
2

2 0

k

k

reach(a,a).

reach(a,N) :- reach (a,M), edge(M,N).

Figure 4.9: Example Datalog program demonstrating the upper bound is tight. The label on
each edge (x, y) denotes the height annotation h (edge(x,y)). Although edge is an input relation
for this stratum, the height annotations may be non-zero as a result of some pre-processing stage
(see Figure 4.8 for an example of how this may occur).

We also note that maxh cannot exceed n since in each iteration of TP where a new tuple is
generated, the height annotation of that tuple cannot exceed the maximum height annotation
in the previous iteration, plus 1. If no more tuples are generated, then the height annotation
for any tuple may not increase. Therefore, by generating a new tuple, we increase maxh by at
most 1, and therefore this value is at most the total number of tuples generated.

50 Chapter 4: Large-Scale Provenance in Datalog

Therefore, in the worst case, the provenance evaluation strategy may have to do a quadratic
amount of extra work compared to standard bottom-up evaluation. However, as real-world
examples (see Section 4.5) show, such instances rarely occur, and scalability is maintained in
most real-world applications.

4.3.3 Proof Tree Construction by Provenance Queries

Given a provenance instance (I, h) computed by the provenance evaluation strategy and a tuple
t ∈ I, the aim is to construct one level of a minimal height proof tree for t. We utilize the
height annotations h and rule number annotations that are stored alongside the instance during
bottom-up evaluation. We use a top-down approach for proof tree construction, starting from
a query tuple and recursively finding tuples that form a valid instantiation of a rule generating
the query tuple. Denote h (t) to be the height annotation and r (t) to be the rule corresponding
with the rule annotation for t.

The result of this search would be a sequence t1, . . . , tn such that t :− t1, . . . , tn is a valid in-
stantiation of r (t) leading to a minimal height proof tree. A pre-requisite is that the provenance
instance (I, h) is the result of bottom-up evaluation, and since all possible tuples are computed
during this evaluation, we know that each t1, . . . , tn exists in I. Thus, this problem would be
solved by searching for tuples in the already computed instance I.

However, we must constrain this search such that the result is part of a proof tree of min-
imal height since there may be multiple valid configurations for the body of r (t), and some
configurations may not lead to minimal height proof trees. These constraints result from the
annotations from bottom-up evaluation. From Theorem 4.3.5, there exists a configuration for
the body that leads to a minimal height annotation for the head, and the height annotation for
tuple t is generated as

h (t) = max (h (t1) , . . . , h (tn)) + 1

by the consequence operator. Therefore, a configuration leading to the minimal height proof
tree is t1, . . . , tn where h (ti) < h (t) for each ti. Note that there may be multiple configurations
leading to a proof tree of minimal height, and any of these configurations is a valid result for
the problem.

The problem can be phrased as the following goal search. Given a tuple t and a rule r (t) :
R(X) :− R1(X1), . . . , Rn(Xn), ψ(X1, . . . , Xn) generating t, we want to find tuples t1, . . . , tn ∈ I
such that t :− t1, . . . , tn is a valid instantiation of r (t), with proof annotations of each ti

satisfying the former constraints.

?− R1(X1), . . . , Rn(Xn), ψ(X1, . . . , Xn),matches(t,X1, . . . , Xn),

h(R1(X1)) < h(t), . . . , h(Rn(Xn)) < h(t)

The condition matches(t,X1, . . . , Xn) denotes that for a result t1, . . . , tn, the variable map-
ping from each Xi to ti is consistent with the variable mapping from X to t. This is related
to the unification problem in Prolog, and in our context is crucial to ensure that the resulting
configuration forms a valid instantiation of r.

4.3 A New Provenance Method 51

Example. We illustrate this construction using the running example. The query is for the
tuple alias(userSession,ins). From the initial bottom-up evaluation, the height annotation
is h (alias(userSession,ins)) = 3, and the generating rule is r4:

alias(Var1,Var2) :− vpt(Var1,Obj), vpt(Var2,Obj), Var1 ̸= Var2.

The proof tree construction searches for tuples forming a configuration for the body of r4:
vpt(Var1,Obj), vpt(Var2,Obj) satisfying the constraints:

Var1 = userSession,

Var2 = ins,

h (vpt(Var1,Obj)) < 3,

h (vpt(Var2,Obj)) < 3

In this example, the first two constraints correspond with matches(t,X1, . . . , Xn), and the
last two constraints enforce the conditions for proof height annotations. Therefore, the goal
search is

?− vpt(Var1, Obj), vpt(Var2, Obj), Var1 ̸= Var2, Obj ̸= nullptr,

Var1 = a, Var2 = b, h (vpt(Var1, Obj)) < 3, h (vpt(Var2, Obj)) < 3

Solving this goal clause, we find the tuples vpt(userSession,L3) and vpt(ins,L3), which
form the next level of the proof tree:

vpt(userSession,L3) vpt(ins,L3)
userSession ̸= ins

L3 ̸= nullptr
r4

alias(userSession,ins)

The other constraints and negations in the rule, denoted ψ(X1, . . . , Xn) in the goal search,
are handled by finding the variable instantiation for X1, . . . , Xn and displaying the instantiated
constraint/negation as a node in the proof tree. No further proof search is required, as constraints
with constants are trivially shown to be true, and negation is proved by asserting that the tuple
does not appear in the IDB.

To illustrate how negations and constraints are handled, consider the recursive program in
Figure 4.10a finding all pairs of nodes in a graph with distance at least 2:

path2(X,Z) :- edg(X,Y), edg(Y,Z), !edg(X,Z), X != Z.

path2(X,Z) :- edg(X,Y), path2(Y,Z), !edg(X,Z), X != Z.

(a) Example program with negation

edg(a,b).

edg(b,c).

edg(c,d).

(b) EDB Tuples

The output contains the tuple path2(a, d), and its proof tree would be:

edg(a,b)
edg(b,c) edg(c,d) !edg(b,d) b ̸= d

r1
path2(b,d) !edg(a,d) a ̸= d

r2
path2(a,d)

52 Chapter 4: Large-Scale Provenance in Datalog

An important difference between our proof tree goal search and a standard conjunctive
query evaluation is that our goal search terminates as soon as the first solution is found, which
is sufficient for generating a minimal height proof tree. In contrast, a standard conjunctive query
evaluation finds all possible configurations for the query.

The complexity of the goal search depends highly on the data structures used in the imple-
mentation. We assume fully (B-tree) indexed nested loop joins. Therefore searching for a tuple
for a rule with an m nested join requires O(logm n) time. Given a proof tree height of k, we
need O(k logm n) ≡ O(logm n) to traverse a single branch.

4.3.4 Provenance for Non-Existence of Tuples via User Interaction

The provenance evaluation strategy of the previous section explains the existence of tuples in
relations. However, the non-existence of tuples may also indicate faults in the input relations or
in the rules.

Therefore, we extend our approach explaining why a tuple cannot be derived, i.e., if the user
expects a tuple, but it does not appear in the IDB, the user may wish to investigate why the
tuple is not produced. Alternatively, a user may want to understand why a negated body literal
holds in a rule during the debugging process.

A non-existent tuple is characterized by every proof tree for the tuple failing to be con-
structed. The source of failure may be (1) tuples for the construction not being in the EDB/IDB,
or (2) the constraints of rules not being satisfied. Given the potentially infinite number of failing
proof trees, we avoid automatic procedures that represent a serious technical challenge and are
not guaranteed to discover a failed proof tree containing the root cause of the fault. In practice,
without a formal description of the root cause of the fault, the provenance system cannot decide
which failed proof tree is most suitable1.

Hence, in our system, we take a pragmatic, semi-automated approach that is inspired by
existing work such as [71, 110]. Our system leverages user domain knowledge and allows user
interactions to guide the construction of a single failing proof tree incrementally. Each user
interaction produces a failing subproof or one level of the proof tree. This failing proof tree
provides a succinct representation of valuable information for a Datalog user to discover why
an expected tuple is not being produced by the program and does not burden the user with too
much unnecessary information.

Formally, we define the problem as follows: given a provenance instance (I, h) computed
by the provenance evaluation strategy, a tuple t /∈ I but expected to be in I, and a rule r:
R(X) :− R1(X1), . . . , Rn(Xn), ψ(X1, . . . , Xn) with head relation matching t, we aim to find
a configuration t1, . . . , tn for the body of r, such that either: (1) at least one ti /∈ I or, (2)
the constraints ψ(X1, . . . , Xn) are not satisfied. Such a configuration forms a failing subproof,
and recursively constructing subproofs results in a full failed proof tree. Note that it would be
impossible to find a configuration where all tuples ti ∈ I and constraints ψ(X1, . . . , Xn) hold
since the prior assumption is that t /∈ I. If such an instantiation cannot be found, then the tuple

1Proof annotations such as introduced in the previous section can only describe existent tuples in the IDB. It
is impossible to consider such annotations for tuples that are not produced by the program.

4.3 A New Provenance Method 53

t can be generated by the Datalog program, and thus t ∈ I.
For showing the non-existence of a tuple, the provenance system supports the Datalog user

in constructing the failing proof tree in stages. The debugging query for non-existence has three
user interaction steps that are repeated until the root cause of the fault is found. The user
interaction steps are as follows:

1. the user defines a query for the non-existence of a tuple,

2. the user selects a candidate rule from which the tuple may have been derived,

3. the user selects candidate variable values of unbound variables in the rule.

The system displays the rule application in the failing proof tree indicating the portions of
the rule that fail (i.e., at least one literal / constraint must fail) and the portions of the rule
that hold.

The Datalog user can continue the query with the newly found failing literals guiding the
system to find the root cause of the fault. This process is semi-automated since the nature of
the fault is known by the Datalog user only.

Example: Consider the example from Figure 2.2 for which we want to query the non-
existence of the tuple vpt(sec,ins). In the first user interaction step, the Datalog user queries
for an explanation for the non-existence of the tuple vpt(sec,ins). Then, the Datalog user
selects an appropriate rule such as rule r2.

The system can then produce a partial instantiation for the body of the rule, where variables
matching the head are replaced by concrete values from t such as,

vpt(sec,ins) :− assign(sec,ins), vpt(ins,Obj)

In the last user interaction step, the Datalog user selects instantiations for the remaining
free variables in rule r2. For example, the Datalog user may choose the value L3 for the free
variable Obj.

vpt(sec,ins) :− assign(sec,ins), vpt(ins,L3)

Given the instantiated rule, the provenance system will evaluate which portions of the sub-
proof fail and which portions hold. With that information, the Datalog user can continue the
exploration of the failing portions to find the root cause of the fault. A simple color labeling
helps the user indicate which portions fail and hold, respectively.

assign(sec,ins) X vpt(ins,L3) ✓
r2

vpt(sec,ins)

In the above example, the red color and X denotes the non-existence of the tuple assign(sec,ins)
in the IDB, i.e., a failing portion of the proof tree. The blue color with ✓ indicates that
vpt(ins,L3) holds.

54 Chapter 4: Large-Scale Provenance in Datalog

In summary, our provenance system constructs a single failed subproof to explain the non-
existence of a tuple. The construction of the failed subproof is guided by the Datalog user
to ensure the answer contains a relevant explanation, given the infinitely many possible failed
proof trees. The semi-automatic proof construction approach supports the Datalog user by
highlighting which portions of the subproof hold and fail to guide the exploration.

4.3.5 Alternative Proof Tree Shapes

Our debugging strategy introduces an interactive system to explore fragments of proof trees to
pinpoint faults in the Datalog program. Therefore, we wish to minimize the number of user
interactions required to find the fault. For this aim, minimal height proof trees are critical for
reducing the number of user interactions in the fault investigation phase. The utility of this
approach is backed by several user experiences in industrial-scale applications (see cf. Section
7.1.2 [54]).

While generating proof trees of minimal height is useful for users, in principle, our framework
is more general and can support a variety of metrics that may be beneficial in future applications.
In this section, we outline general properties of proof tree metrics by having the following
properties for function h:

1. The codomain of h must have a partial ordering ⊑ so that an update mechanism can be
well defined. It is important that the annotation for a tuple can be updated if the same
tuple is generated again with smaller (according to ⊑) annotation. This ensures that the
resulting annotations are always minimal since tuples will continue being updated with
smaller annotations until a fixpoint with annotations is reached.

2. The metric must be compositional, i.e., if t is generated by a rule instantiation t :−
t1, . . . , tn, then h (t) = f (h (t1) , . . . , (tn)). The importance of this property is two-
fold. Firstly, it ensures that the values of the annotations can be computed during
evaluation of the Datalog program by encoding f as a functor in the transformed Dat-
alog program. For example, a rule may be transformed to be R(X, f (h1, . . . , hn)) :−
R1(X1, h1), . . . , Rn(Xn, hn). to compute the value of the annotation.

Secondly, the compositional property is important for the reconstruction of the proof tree.
In the backward search for a body configuration that may produce the head tuple, f may
be encoded as a constraint. For example, a backward search may be

? :−R1(X1), . . . , Rn(Xn), ψ(X1, . . . , Xn),matches(t,X1, . . . , Xn),

h(t) = f (h(R1(X1)), . . . , h(Rn(Xn)))

where the last constraint ensures that the tuples found from the search correctly generate
t with matching annotations.

3. The metric must be monotone, i.e., h (ti) ⊑ h (t) for all 1 ≤ i ≤ n, and bounded, i.e.,
there is a minimum value c such that c ⊑ h (t) for any tuple t. This property ensures that
the provenance evaluation strategy terminates. Monotonicity ensures that with each rule

4.4 Implementation in Soufflé 55

application, the annotation converges towards the minimum value c, and once it reaches
c, then termination must occur.

If a given metric satisfies the above properties, then it can be used instead of proof tree height
in our framework. Examples of such metrics could be the size of proof trees by the number of
nodes or a sequence of k proof tree heights describing the smallest k proof trees for each tuple.
One could also combine multiple metrics by a lexicographical ordering, for example producing
proof trees of minimal height with a minimum number of nodes.

Given that our framework can be adapted to various proof tree shapes, the provenance
system could be adapted for other applications that make use of other metrics. For example,
given a program analysis written in Datalog, the origin of a bug alarm can be explained through
its provenance. Such ideas, such as thin slicing [75], may also be able to use our provenance
framework as a building block, and we leave this integration to future work.

4.4 Implementation in Soufflé

Recall, from Section 2.5.1, that the Soufflé Datalog engine is implemented as a synthesizer,
which produces C++ code from a given Datalog program. During this process, an intermediate
representation, RAM, represents the operational procedure of evaluating the Datalog program.

The main challenge of integrating the provenance evaluation strategy into Soufflé is to allow
the synthesis to be aware of proof annotations. In particular, the semi-naïve evaluation ma-
chinery must be replaced by the provenance evaluation strategy as described in Section 4.3.2 to
handle the proof annotations. Another critical part of this machinery is the synthesis of data
structures [54, 8] for relations that are specialized for the operations in the program. The syn-
thesized data structures have to be extended for proof annotations as well, enabling an update
semantics in Datalog for the annotations.

For the provenance evaluation strategy, we need to amend relations with extra attributes to
contain the proof annotations. We utilize the synthesis pipeline of Soufflé by introducing two
provenance attributes for each relation. The first attribute represents the rule number of the rule
which generated the tuple, and the second attribute represents the proof tree height. These two
new attributes are introduced for each relation at the syntactic level in Soufflé. A predicate R(X)

is transformed into R(X,@rule,@height). For the sake of readability in this text, we distinguish
between original and provenance tuples, where an original tuple is a provenance tuple without
proof annotations. We rewrite all logic rules at the syntactic level to take account of the two
provenance attributes constituting the proof annotation for our system and to compute the value
of the annotations. The proof annotation instrumentation is performed as follows where a rule
rk:

R(X) :− R1(X1), . . . , Rn(Xn), ψ(X1, . . . , Xn)

is transformed into:

R(X, k,max(@height1, . . . ,@heightn) + 1) :−

R1(X1,_,@height1), . . . , Rn(Xn,_,@heightn), ψ(X1, . . . , Xn)

56 Chapter 4: Large-Scale Provenance in Datalog

The transformed provenance rule computes level and height annotations for a new tuple, ac-
cording to the semantics in Section 4.3.2. Since the rules are known statically, the rule number
annotation k can be assigned a constant value for each rule in the transformed program. The
rule numbers of the body predicates are ignored by using _ in each body predicate since they
do not influence the head predicate.

The transformed provenance rule syntactically represents the computation of proof annota-
tions during rule evaluation. However, the actual execution of provenance rules differs from a
standard semi-naïve evaluation as presented in [12]. The reason is the update mechanism: a
newly discovered provenance tuple may overwrite an existing provenance tuple if they are the
same original tuple, but the new tuple has a smaller height annotation.

The provenance evaluation strategy extends the semi-naïve algorithm by updating the rule
number and the height annotation of a tuple (as defined by TP) if the original tuple already
exists and the newly generated tuple has a smaller height annotation. In other words, if a
smaller proof tree could be found in a subsequent iteration for the same tuple, then an update
occurs. Otherwise, if the original tuple does not already exist, the provenance tuple is inserted
into the relation as is. Thus, the rule computing ∆i+1

R0
in the semi-naïve evaluation is modified

to accommodate the possibility of updates, i.e.,

∆i+1
R0

=
(
newi+1

R0
−Ri

0

)
∪
{
t ∈ Ri

0 | hi(t) > hi+1(t)
}

where hi denotes the height annotations in iteration i.
Therefore, with our provenance evaluation strategy, we integrate the possibility of an anno-

tation update into the data structure. During an insertion operation, if the same original tuple
is discovered, with a larger height annotation than the current tuple, then an update occurs.
Therefore, we wish to call the insert operation if either the tuple does not already exist or the
existing tuple has the larger proof annotation. A specialized existence check is implemented,
implicitly implementing the semantics of the provenance ∆i+1

R relation. Similar to the standard
existence check, the special existence check is implemented as part of the data structure that
has been specialized for each relation.

The result is the RAM snippet in Figure 4.11. The differences compared to the standard
Datalog evaluation in Figure 2.8 are in lines 3-4, where the level annotation is computed within
the loop nest as part of the insertion. Furthermore, the PROV NOT IN operation in line 3 denotes
the special provenance existence check, which allows the INSERT to proceed if either the tuple
does not already exist or exists with a larger proof height annotation. Thus, this implements
the update semantics discussed above.

1 FOR a IN assign
2 FOR b IN delta_vpt ON INDEX b.0 = a.1
3 IF (a.0,b.1,_,(max(a.@height,b.@height)+number(1))) PROV NOT IN vpt
4 INSERT (a.0, b.1, number(2), (max(a.@height,b.@height)+number(1))) INTO new_vpt

Figure 4.11: Provenance version of RAM loop nest

However, the specializations in the data structures still remain to be discussed. Soufflé
employs a highly specialized parallel B-tree data structure [8], with index orderings for the

4.4 Implementation in Soufflé 57

attributes generated automatically via an optimization problem [54]. The B-tree employs a
special optimistic read/write lock for each node, allowing high throughput for parallel insertion.
During an insert operation, a thread may obtain a read lease for each node as it checks whether
the tuple to be inserted already exists. If an insertion is required, it checks if the lease has changed
and restarts the whole procedure if it has. Otherwise, it upgrades to a write lease and inserts
the tuple into the correct position in the B-tree. The data structure also takes advantage of
Soufflé’s Datalog evaluation setting, where a single relation is either read from or written to, but
never at the same time. Therefore, there are no interleaved reads and writes, so read operations
are not synchronized.

With the proof annotations, we modify these specializations so that they can take into
account the provenance semantics. The important step is the update semantics, and thus we
integrate an update mechanism into the insert operation without requiring to delete and then
re-insert. The provenance evaluation strategy requires two main modifications to our B-tree
data structure. Firstly, the existence check for insertion should consider only the original tuple
and ignore annotations. This ensures that Datalog set semantics are preserved and that no
duplicate original tuples can exist. However, note that we still need to retrieve the full tuple,
including its proof annotations. This is important for the proof tree construction, discussed in
the next section. To address this concern, we use different lexicographical orderings of indices for
the insert and retrieve operations. The insert index order does not include the attributes
storing the proof annotations (so that annotations are not considered when checking existence),
while the retrieve index order does. We also need to ensure that updating an annotation does
not change the ordering of tuples according to the index; otherwise, subsequent index-supported
searches will fail. Therefore, the retrieve index order requires the annotation attributes to be
at the end, as this guarantees that an update to the annotations does not affect tuple ordering.

Secondly, we must have a mechanism to update existing tuples to implement the update
semantics in Section 4.3.2. To achieve this, we modified the insert operation so it may also
update any existing tuple with a smaller proof annotation. This insertion first requires to
check if the original tuple exists in the B-tree. If it does, rather than aborting (as it would
with standard Datalog evaluation), the insertion then checks the annotation. If the height
annotation of the existing tuple is larger than the tuple to be inserted, then the annotations
of the existing annotation are updated with new values. Note that during an update, a read
lease also needs to be validated and upgraded to a write lease. The integration of the update
into the insert operation avoids any need to delete and re-insert tuples, thus improving the
efficiency of the provenance evaluation strategy. These modifications to the B-tree reflect the
desired insertion semantics, and updates are handled directly in the insert operation. All other
retrieval operations for the B-tree are not modified, and tuples can be retrieved as normal,
including their proof annotations.

4.4.1 Implementing a Proof Tree Construction User Interface

After the provenance evaluation strategy is completed, the proof tree construction stage is driven
by the user. It is critical that this process is also fully parallelized and highly performant.

58 Chapter 4: Large-Scale Provenance in Datalog

The user interface is implemented as a command-line interface, where the user can enter
queries to explain the existence and non-existence of a tuple. For example, the user can give
the query explain alias("userSession","ins") which produces the proof tree in Figure 4.12.
Explaining the non-existence of a tuple, i.e., the query explainnegation vpt("userSession",

"L4"), results in the interaction in Figure 4.13. The user may also select the size of proof tree
fragments to display, i.e., setdepth 6 instructs the system to construct 6 levels of the proof
tree in the next query. For each debugging query, the system invokes the relevant procedure to
construct a proof tree fragment.

> explain alias("userSession", "ins")
new("ins", "L3")
-------------(R1)

assign("userSession", "ins") vpt("ins", "L3") new("ins", "L3")
---(R2) -------------(R1)

vpt("userSession", "L3") vpt("ins", "L3") "userSession" != "ins"
"L3" != "nullptr"

---(R1)
alias("userSession", "ins")

Figure 4.12: Explaining the tuple alias(userSession,ins)

> explainnegation vpt("userSession", "L4")
1: vpt(Var,Obj) :-

new(Var,Obj).

2: vpt(Var,Obj) :-
assign(Var,Var2),
vpt(Var2,Obj).

3: vpt(Var,Obj) :-
load(Var,Y,F),
store(P,F,Q),
vpt(Q,Obj),
vpt(P,AliasObj),
vpt(Y,AliasObj).

Pick a rule number: 2
Pick a value for Var2: "ins"

assign("userSession", "ins") ✓ vpt("ins", "L4") X
--(R2)

vpt("userSession","L4")

Figure 4.13: Explaining the non-existence of the tuple vpt(userSession,L4)

The proof tree construction procedures must be highly performant since the constructed
IDB may be very large, and we may need to search through many tuples to construct a proof
tree fragment. Therefore, the proof tree construction procedures must be tightly integrated into
the Soufflé system to enable a high-performance, parallel search. We integrate these procedures

4.5 Experiments 59

into the Soufflé RAM, utilizing the existing translation from RAM to parallel C++. Moreover,
since the provenance evaluation strategy uses specialized B-tree data structures, the proof tree
construction phase can also utilize index-supported searches to find relevant tuples.

Recall that the proof tree construction is facilitated by searches for subproofs. Therefore,
we require a specialized framework in the Soufflé RAM to implement a subproof search. We
term this framework a subroutine framework. Each subproof search can be implemented as a
subroutine, thus integrating with the Soufflé RAM.

To explain the existence of a tuple, a subproof search is required to search the body of a
rule for matching body tuples, satisfying the constraint that the proof tree height is lower than
the current tuple. This backward search for a single rule is implemented as a subroutine. For
example, the rule r2 : vpt(Var, Obj) :− assign(Var, Var2), vpt(Var2, Obj) is implemented as
the subroutine in Figure 4.14.

1 SUBROUTINE vpt_2_subproof
2 FOR a IN assign WHERE a.0 = argument(0) AND a.@height < argument(2)
3 FOR b IN vpt ON INDEX b.0 = a.1 AND b.1=argument(1) WHERE b.@height < argument(2)
4 RETURN (a.0, a.1, a.@rule, a.@height, b.0, b.1, b.@rule, b.@height)

Figure 4.14: Subroutine for example program

Lines 2-5 represent a search through a database that is already constructed by the initial
bottom-up evaluation, to find tuples which satisfy the constraints required for the construction
of a proof tree fragment. The values of argument(0) and argument(1) are the values in the head
tuple, and argument(2) is the height annotation of the head tuple. Therefore, this subproof
search is parameterized by the head tuple. The relations of the body atoms assign and vpt

are searched to find tuples a and b that match the rule’s body. Importantly, the constraints for
the level number are encoded in lines 2-3, ensuring that the resulting tuples have level number
annotations lower than the query tuple. As shown in Section 4.3.3, applying this operation
recursively allows us to generate the full proof tree.

Similarly, to generate a failed subproof to explain the non-existence of a tuple, the search for
failing and holding parts of a subproof is implemented as a subroutine. Given an instantiated
rule (which is produced via user interaction), a subroutine returns whether each body tuple is
in the IDB and whether each constraint is satisfied.

4.5 Experiments

In this section, we conduct experiments with the provenance evaluation strategy and provenance
queries implemented in Soufflé (see Section 4.4). The experiments are conducted for large-scale
Datalog programs. We have the following experimental research claims:

Claim-I: Our provenance evaluation strategy only has a minor impact on the runtime
performance and remains scalable for realistic datasets and rulesets.

Claim-II: The provenance queries for exploring proof tree fragments scale to large sizes,
allowing efficient interactive exploration of proof trees.

60 Chapter 4: Large-Scale Provenance in Datalog

context-insensitive 1-obj, 1-heap
Benchmark # EDB # IDB # EDB # IDB
antlr 8,319,095 21,832,232 8,319,095 24,145,648
bloat 4,468,277 13,104,020 4,468,277 15,417,516
chart 8,743,770 22,975,742 8,743,729 25,289,200
eclipse 4,389,770 13,076,265 4,389,799 15,389,708
fop 8,769,583 22,970,533 8,769,572 25,283,913
hsqldb 9,007,087 24,561,921 9,007,087 26,875,437
jython 5,203,400 17,158,375 5,203,400 19,471,797
luindex 4,396,394 13,415,336 4,396,394 15,728,788
lusearch 4,396,415 13,415,390 4,396,394 15,728,788
pmd 8,388,202 22,853,676 8,388,202 25,167,134
xalan 8,670,980 23,488,951 8,670,966 25,802,385

Table 4.1: Statistics for Doop benchmarks

Claim-III: Minimal height proof trees are very large for realistic benchmarks, substanti-
ating the need for interactive proof tree exploration.

Our experiments were performed on a computer with an Intel Xeon Gold 6130 CPU and 192
GB of memory, running Fedora 27. Soufflé executables were generated using GCC 7.3.1.

4.5.1 Performance of the Provenance Evaluation Strategy

Doop. For the first set of experiments, we use the Doop [20] points-to analysis framework.
We experiment with Doop’s context-insensitive and 1-object-sensitive, 1-heap (1-obj, 1-heap)
analyses that exhibit different runtime complexities. As inputs for the points-to analyses, we
compute the points-to sets for the DaCapo 2006 Java program benchmarks. Each analysis
contains approx. 300 relations, 850 rules and produces up to approx. 26 million output tuples
on the DaCapo benchmarks (See Table 4.1).

In Table 4.2, we present the runtime and memory consumption of Soufflé with 8 threads,
comparing standard Soufflé with our provenance evaluation strategy with proof annotations. We
use the DaCapo benchmarks with both the context-insensitive and 1-obj, 1-heap analysis. As
expected, Soufflé with proof annotations incurs an overhead during evaluation. This overhead for
the provenance evaluation strategy is typically within a factor of 1.3, which is a small overhead
to pay for being able to generate minimal proof trees for all possible tuples in the IDB. Hence, we
demonstrate the viability of the provenance evaluation strategy for large-scale Datalog programs,
substantiating Claim I. We noticed that the runtime overhead for the context-insensitive analysis
was smaller across all benchmarks than that of the 1-obj-1-heap analysis due to cache locality
that was more prominent for smaller memory footprints. Note that the overhead for memory
consumption is similar to performance overheads, at approximately 1.45×. This overhead results
from the storage of extra proof annotations during evaluation.

In contrast, a naïve direct encoding approach (see Chapter 5, [111]), where each tuple is
annotated with its full subproof (i.e., direct children in the proof tree), resulted in excessive
memory usage (up to 100×) on a simple transitive closure experiment with 2000 tuples. Thus,

4.5 Experiments 61

Runtime (sec) Memory (MB)
Benchmark No Prov. Prov. (×) No Prov. Prov. (×)
context-insensitive
antlr 9.73 12.29 1.26 595 900 1.51
bloat 9.54 12.25 1.28 596 900 1.51
chart 15.89 19.60 1.23 1,103 1,604 1.45
eclipse 9.64 11.76 1.22 593 898 1.51
fop 15.57 19.48 1.25 1,079 1,579 1.46
hsqldb 16.36 19.73 1.21 1,124 1,642 1.46
jython 11.00 13.62 1.24 731 1,090 1.49
luindex 9.62 12.00 1.25 594 905 1.52
lusearch 9.80 12.23 1.25 593 904 1.52
pmd 15.58 18.90 1.21 1,053 1,542 1.46
xalan 15.59 19.54 1.25 1,091 1,595 1.46
geo-mean 1.24 1.44
1-obj, 1-heap
antlr 10.84 12.60 1.16 936 1,310 1.40
bloat 15.77 22.00 1.40 732 1,082 1.48
chart 21.84 28.13 1.29 1,242 1,788 1.44
eclipse 15.76 21.00 1.33 729 1,080 1.48
fop 22.21 29.63 1.33 1,216 1,756 1.44
hsqldb 23.01 29.43 1.28 1,256 1,823 1.45
jython 17.54 22.96 1.31 868 1,270 1.46
luindex 15.94 21.55 1.35 730 1,086 1.49
lusearch 15.95 21.25 1.33 731 1,087 1.49
pmd 21.58 28.21 1.31 1,190 1,725 1.45
xalan 22.09 28.68 1.30 1,224 1,773 1.45
geo-mean 1.31 1.46

Table 4.2: Runtime and memory usage overheads for Soufflé with and without proof annotations
with 8 threads

a direct encoding cannot be deployed for large-scale Datalog programs such as Doop.

Figures 4.15a and 4.15b show the total runtime and average memory usage for each of the
Doop DaCapo benchmarks with both Doop (context-insensitive and 1-obj-1-heap) analyses,
running with multiple threads. The figure demonstrates that the provenance evaluation strategy
is scalable in that the overhead is sustainable with an increasing number of threads. We observe
that the overall runtime decreases for provenance and without provenance until 5 threads and
increases thereafter. This is caused by the synchronization of Soufflé’s rule evaluation system and
is not specific to provenance. Interestingly, the runtime overhead is larger with fewer threads,
being 1.45× for 1 thread and 1.23× for 16 threads. Again, this is related to the underlying
hardware architecture providing caches and memory lanes for each core. With more threads,
the memory bandwidth to access the logical relations with proof annotations improves.

The memory usage of the provenance evaluation strategy has a consistent overhead of 1.45×,
which aligns with our expectations that there would be a reasonable overhead associated with
storing the provenance annotations per tuple. Note that this overhead is constant over any
number of threads since the amount of extra information stored overall does not change with

62 Chapter 4: Large-Scale Provenance in Datalog

1 2 3 4 5 6 7 8 9 10111213141516
0

500

1,000

Threads

R
un

ti
m

e
(s

ec
)

No Prov. Prov.

(a) Total evaluation runtime of Soufflé on all
DaCapo benchmarks with each Doop

(context-insensitive and 1-obj, 1-heap) analysis
with and without provenance

1 2 3 4 5 6 7 8 9 10111213141516
0

500

1,000

1,500

Threads

M
em

or
y

(M
B

)

No Prov. Prov.

(b) Average evaluation memory usage of Soufflé
on all DaCapo benchmarks with each Doop

(context-insensitive and 1-obj, 1-heap) analysis
with and without provenance

Benchmark # EDB # IDB
cactusADM 845,762 12,758,417
calculix 1,934,084 39,101,856
gamess 9,892,299 204,764,756
gcc 3,968,589 133,994,711
GemsFDTD 445,185 16,483,816
gobmk 4,211,765 34,935,275
gromacs 1,122,734 16,238,070
h264ref 638,837 12,991,980
omnetpp 720,581 18,261,432
perlbench 1,330,330 65,875,051
povray 1,160,773 55,857,237
tonto 4,767,218 285,090,829
wrf 4,690,140 97,986,011

Table 4.3: Statistics for Ddisasm benchmarks

the number of threads.

Ddisasm. For the second set of experiments, we use the Ddisasm [25] disassembler tool. The
Ddisasm tool takes an executable binary as input and produces an assembly version of that
binary as output. The main part of Ddisasm is a Soufflé program containing 535 relations and
1020 Datalog rules. Again, we run Ddisasm with and without provenance annotations, with 8
threads. As a benchmark suite, we use a subset of the SPEC CPU 2006 benchmarks, presenting
only those with disassembly runtimes longer than 5 seconds. Each benchmark takes between
400 thousand and 9 million tuples as input, and produces between 12 and 285 million tuples as
output (See Table 4.3).

The results in Table 4.4 demonstrate that the provenance evaluation strategy incurs a run-
time and memory overhead. For Ddisasm, the runtime overhead is approximately 1.39× on
average, which is an acceptable overhead for generating provenance annotations. However, the
memory overhead for Ddisasm is 2.6×, which is considerably higher than for Doop. This is

4.5 Experiments 63

Runtime (sec) Memory (MB)
Benchmark No Prov. Prov. (×) No Prov. Prov. (×)
cactusADM 6.76 9.26 1.37 700 1,974 2.82
calculix 16.21 21.65 1.34 1,868 5,025 2.69
gamess 105.46 127.68 1.21 9,636 26,076 2.71
gcc 99.05 104.86 1.06 5,180 12,160 2.35
GemsFDTD 7.22 9.01 1.25 709 1,760 2.48
gobmk 19.39 35.56 1.83 1,450 3,453 2.38
gromacs 7.43 10.54 1.42 894 2,558 2.86
h264ref 5.54 7.85 1.42 644 1,679 2.61
omnetpp 10.4 13.17 1.27 763 1,952 2.56
perlbench 16.06 21.53 1.34 2,454 5,460 2.22
povray 11.57 15.71 1.36 2,071 4,532 2.19
tonto 340.49 749.63 2.20 24,395 82,152 3.37
wrf 58.28 74.2 1.27 4,739 13,085 2.76
geo-mean 1.39 2.60

Table 4.4: Runtime and memory usage overheads for Ddisasm on SPEC benchmarks with and
without provenance annotations with 8 threads

due to extra indices that were automatically generated to cover operations during the proof tree
construction stage. In the worst case, a single relation, instruction, required 3 indices for stan-
dard Datalog evaluation, but 9 indices for the provenance evaluation strategy. This means that
tuples in instruction are replicated 3× more with provenance, in addition to the overhead of
the provenance annotations themselves. Future work optimizing the index generation algorithm
in Soufflé will improve the memory overhead for situations where multiple indices are generated
due to the provenance evaluation operations.

The main outlier in Table 4.4 is tonto, which exhibits a 2.2× runtime overhead and a
3.37× memory overhead. This particular benchmark generated 76% of its 285M tuples in the
string_part relation, which had double the indices for the provenance evaluation strategy. As
a result of this data replication, along with an increased cache miss rate (approximately double
for the provenance evaluation strategy, resulting from worse cache coherence from storing prove-
nance annotations), the runtime and memory overheads are larger than for other benchmarks.

While the runtime and memory overhead on Ddisasm is higher than on Doop, the result is
still an acceptable price to pay to generate debugging annotations.

Comparison with Current Approaches. The current state of the art in tracking Datalog
provenance is to instrument the program with a given provenance query. The instrumented
Datalog program can then be evaluated using any Datalog engine. One example of this approach
is the top-k approach [56, 112], where Datalog programs are instrumented based on a provenance
query taking the form of a derivation tree pattern.

For our experiments, we implemented the instrumentation algorithm presented in [112], and
evaluated the resulting Datalog using Soufflé, again using Doop as the test Datalog program.
Since the instrumentation requires a specific derivation tree pattern, we choose one that pro-
duces any proof tree for a single tuple from the VarPointsTo relation in Doop. The tuple

64 Chapter 4: Large-Scale Provenance in Datalog

Runtime (sec) Memory (MB)
Benchmark Top-k Prov. (×) Top-k Prov. (×)
antlr 19.09 19.02 0.99 1,502 1,502 1.00
bloat 12.46 12.74 1.02 901 902 1.00
chart 19.69 20.12 1.02 1,606 1,605 1.00
eclipse 12.46 12.46 1.00 900 899 1.00
fop 19.73 19.87 1.01 1,579 1,582 1.00
hsqldb 20.47 20.44 1.00 1,647 1,646 1.00
jython 14.11 14.25 1.01 1,092 1,092 1.00
luindex 12.48 12.48 1.00 907 907 1.00
lusearch 12.53 12.47 1.00 905 905 1.00
pmd 19.40 19.42 1.00 1,542 1,543 1.00
xalan 19.63 19.73 1.00 1,596 1,595 1.00
geo-mean 1.01 1.00

Table 4.5: Runtime and memory usage overheads for our provenance approach compared to
top-k [112], using Doop with the DaCapo benchmarks.

we choose describes a points-to relationship between two variables in java.lang.Double and
java.lang.Long, which exists in the result for every DaCapo benchmark.

The results in Table 4.5 showed that during Datalog evaluation time, the difference in both
runtime and memory usage is at most 2%. Note that the results differ from the previous section
due to using an older version of Doop, which was better supported by our top-k implementa-
tion. Nevertheless, these results demonstrate that our provenance encoding scheme is at least as
scalable as the state-of-the-art in terms of runtime performance. However, the main difference
between the two approaches is that we can answer any provenance query during proof construc-
tion time, rather than only having the single proof tree matching the derivation tree pattern.
Hence, our provenance evaluation strategy provides no runtime penalty for Datalog evaluation
while having a considerable advantage when exploring the provenance.

4.5.2 Proof Tree Construction

For the construction of proof trees, the performance of the provenance queries is instrumental.
A debugging query constitutes a backward search for a rule (i.e., reverting the computational
direction of a rule). The construction of the proof tree is performed level by level. The expansion
of a node in the proof tree represents a single debugging query.

In Figure 4.16a, we show the time taken to construct proof tree fragments with heights up
to 20. We initiate the proof tree construction for randomly sampled output tuples in the Doop

DaCapo benchmarks. In the figure, we plot the runtime against the number of nodes in the
proof tree fragment. Even for 20 levels, these proof trees contain over 15,000 nodes. Considering
that full proof trees may have heights over 200, the corresponding full proof trees would be
intractable to compute and understand due to exponential growth. However, this experiment
shows that the runtime for the construction of proof trees is approximately linear in the size
of the tree. Therefore, provenance queries can be efficiently computed, and the method will
scale well for interactive use. The interactive exploration of proof trees is scalable, with each

4.6 Chapter Summary 65

0 0.5 1 1.5

·104

0

5

10

15

Number of nodes

T
im

e
(s

ec
on

ds
)

(a) Proof Tree Construction Time

0 100 200 300

0

2

4

6

·105

Height

N
um

be
r

(b) Proof Tree Heights

Figure 4.16: Proof Tree Construction and Statistics

debugging query on average taking less than 1 ms per node.

4.5.3 Characteristics of Proof Trees

In the following experiments, we demonstrate the difficulty of proof tree construction for Datalog
programs at large scale. Figure 4.16b shows the distribution of heights of full proof trees for the
DaCapo benchmarks. The proof tree heights can be more than 300. While this may not seem
prohibitive, the expected number of nodes in the proof tree is exponential in height. A non-linear
regression performed on the sizes of actual proof trees suggests that the branching factor of proof
trees is approximately 1.466 for the DaCapo benchmarks. Therefore, since larger proof trees will
have an exponential number of nodes, it is computationally intractable to construct full proof
trees for these large programs. Besides, there is a usability challenge in generating meaningful
explanations for the existence of a tuple, which is addressed by the interactive exploration of
fragments of a proof tree, with the user exploring only relevant fragments. This is in contrast
to a full proof tree, where a user may have to interpret millions of nodes to find an explanation.

4.6 Chapter Summary

This chapter presents a novel provenance encoding and evaluation strategy for Datalog, which
allows a bottom-up Datalog computation to produce proof trees. The provenance encoding
extends tuples in the IDB with proof annotations. Using these proof annotations, the proof
construction phase can then incrementally construct minimal height proof trees based on user-
defined provenance queries. Our approach has small overheads during the logic evaluation,
exhibiting runtime overheads of ∼1.31× and memory overheads of ∼1.76×.

66 Chapter 4: Large-Scale Provenance in Datalog

Chapter 5

Elastic Incremental Evaluation for
Datalog

Incremental evaluation is a technique that allows for updating the results of a Datalog program
given some changes to its inputs. This chapter discusses the shortcomings of existing incre-
mental evaluation strategies and details our novel approach, which we name elastic incremental
evaluation. The main goal of elastic incremental evaluation is to provide reasonable performance
with both small and large-sized incremental updates, which current state-of-the-art approaches
can struggle with.

This work was published in PPDP 2021, in the paper “Towards Elastic Incrementalization
for Datalog” [2].

This chapter is organized as follows. Section 5.1 introduces the incremental evaluation prob-
lem, and Section 5.2 gives background. Section 5.3 provides further background by detailing
a dense encoding using our notation, which is algorithmically similar to existing incremental
evaluation approaches. Then, Section 5.4 details our elastic incremental evaluation problem,
showing the algorithms and their correctness. Finally, Section 5.5 discusses our implementa-
tion of incremental evaluation strategies in Soufflé, and Section 5.6 provides an experimental
evaluation to validate our approach.

5.1 Incremental Evaluation

As described in Chapter 2, traditional bottom-up techniques in modern Datalog engines have
become effective and performant for real-world applications, such as program analysis, network-
ing, business applications, and others. This standard Datalog evaluation (which we refer to
as batch-mode in this chapter, to distinguish it from incremental) computes the IDB (output
tuples), given a set of rules and an EDB (input tuples. However, many real-world applica-
tions recompute most of their IDB with slight variations of the EDB [113, 50]. Hence, several
state-of-the-art Datalog engines have proposed incremental evaluation techniques [114, 81, 50]
to facilitate streaming, i.e., the evaluation reuses the IDB from the previous computation to
compute the new IDB given some changes to the EDB.

68 Chapter 5: Elastic Incremental Evaluation for Datalog

State-of-the-art incremental evaluation approaches operate on several assumptions: (1) that
the impact, i.e., number of overall tuple changes, is proportional to the update size, and (2)
that the use cases exhibit a continuous stream of small impact updates. Indeed for several use
cases [113], these assumptions tend to hold. However, for other notable use cases such as program
analysis in a continuous integration/continuous delivery (CI/CD) setup [115, 116, 117], these
assumptions do not hold. For example, static analyses written in Datalog can consist of hundreds
or thousands of highly recursive rules and relations [20, 22]. Due to the complexity of the ruleset,
one can no longer assume that update size is proportional to the impact size. Our experimental
evaluation on the Doop program analysis framework found large variability in the impact of
updates due to the connectivity of points-to analyses, where even small program changes may
substantially change pointer sets of variables. Another concern is that static analyzers are
deployed in CI/CD pipelines where state-of-the-art incremental evaluation gives no guarantee
that updates will be structurally small. For instance, when the code base is updated, the initial
change is often a refactor or new feature implementation. Such code changes typically result in
large changes to the input of an analysis, deleting and inserting hundreds or thousands of input
tuples. These changes may then be followed by smaller changes resulting from minor review
suggestions, but as we show, even these smaller input changes do not necessarily result in small
impacts. Thus, we argue the success of incremental evaluation techniques for such use cases
requires minimizing the overhead of evaluating large impact updates.

E1 P I1

E2 P I2

E3 P I3

(a) Batch-mode

∅

E1 ∆P I1
σ1

∆E1→2 ∆P I2
σ2

∆E2→3 ∆P I3

(b) Incremental

Figure 5.1: Batch-mode vs. Incremental Evaluation

Consider Figure 5.1 that illustrates a generic incremental computation setup. Figure 5.1a
shows a batch-mode evaluation for a Datalog program P and EDBs E1, E2, and E3. The
batch-mode evaluation runs the program P with each EDB separately to produce the IDBs I1,
I2, and I3. However, if only a small portion of the EDB and IDB changes between runs, many
computations in the batch-mode evaluation may have been repeated. An incremental evaluation
∆P (illustrated in Figure 5.1b) can reuse computations from a previous run, called an epoch.
A Computational State σ1 encodes the previous computations for I1 in a special format so that
the next run can reuse the computations. With state σ1 and the change in input ∆E1→2, the
incremental evaluation produces the output I2 and the new computational state σ2. This process
may be repeated, with a series of updates to the EDB being provided via ∆Ei→i+1. For the first
epoch, we use the empty state as the computational state and E1 as ∆E1 to produce I1 and
the state σ1. Any subsequent change ∆Ei→i+1 in the EDB is processed by using the previous
computational state σi to generate Ii+1.

5.1 Incremental Evaluation 69

State-of-the-art incremental evaluation strategies [50, 49] represent their computational state
exhaustively to perform small updates efficiently. Because of their exhaustive representation,
however, the initiation of a stream and computing larger updates can both be prohibitively slow.
For example, when a static program analysis seeks to reuse previous computations for a large
code refactoring, significant portions of the control flow graph may have been replaced. In such a
use case, an incremental evaluation will essentially perform two computations, one to delete the
old control flow graph and one to compute the new control flow graph with additional overheads
caused by incrementalization. Therefore, these heavyweight updates are better served by an
evaluation strategy that is closer to standard batch-mode evaluation augmented with state for
the future updates to be performed incrementally.

In this chapter, we demonstrate that both fully non-incremental and fully incremental strate-
gies are not effective in some scenarios. Therefore, we propose an elastic incremental evaluation
scheme called Bootstrap-Update, which is a hybrid approach. Figure 5.2 provides an overview.
Our approach has two distinct strategies to evaluate an update: a specialized Bootstrap denoted
as Pb (Figure 5.2a) and Update denoted as Pu (Figure 5.2b). The specialized Bootstrap resem-
bles an augmented batch-mode evaluation that produces the computational state from scratch
to allow subsequent updates, whereas Update is an incremental evaluation strategy. With the
Bootstrap strategy, our approach can react to large incremental updates. For example, Fig-
ure 5.2c shows a scenario where the update from E3 to E4 is prohibitively large, and so the
Bootstrap strategy is used to restart the incremental computation from scratch using E4.

Pb

σk

Ek

Ik

(a) Bootstrap Strategy

σk−1

Pu

σk

∆Ek−1→k Ik

(b) Update Strategy

∅

E1

Pb

∆E1→2

I1

Pu

∆E2→3

I2

Pu

I3

E4

Pb

∆E4→5

I4

Pu . . .

I5

(c) Elastic Incremental, E4 causes a restart in the stream using Bootstrap

Figure 5.2: Elastic Incremental Evaluation

Our approach proposes a novel sparse encoding that maintains a lightweight state σ. Our
state exhibits a space complexity of O(|I|) (i.e. linear in the size of the output), whereas existing
incremental encodings [50, 81] have a worst-case space complexity of O(m|I|) where m is the
number of fixpoint iterations in the semi-naive evaluation algorithm [12]. Our lightweight state
allows for an accelerated Bootstrap algorithm that can handle high-impact updates by efficiently
recomputing the state from scratch, with the trade-off that the Update strategy may require
more work for smaller updates. Furthermore, we provide a simple heuristic for choosing the
appropriate strategy: we re-run the bootstrap when the incremental update takes more than a
fraction (as a switching parameter) of the last bootstrap’s runtime. This switching parameter

70 Chapter 5: Elastic Incremental Evaluation for Datalog

depends on the behavior of each application and the typical update characteristics for that ap-
plication. Our solution operates under the insight that if we have comparable performance with
batch-mode Datalog evaluation on large impact updates and a small slow down on low impact
updates, we will have an overall net gain by selective application of incremental evaluation.

We have integrated our elastic Bootstrap-Update incremental evaluation in the open-source,
high-performance Datalog engine Soufflé [23]. We have performed an extensive evaluation on
a number of use cases that show our approach’s utility compared to existing techniques on
both large and small updates. We also provide a discussion of the practical considerations for
building incremental evaluation in Soufflé that include relational data structures, parallelization,
and scheduling strategies.

In summary, we make the following contributions in this chapter:

1. We present a new problem - that incremental evaluation should be elastic, i.e., it should
be sensitive to the impact of an update.

2. We present a novel incremental evaluation using a sparse derivation counting encoding,
exhibiting superior performance and lower memory overhead for elastic use cases.

3. We extend Soufflé, an open-source Datalog evaluation engine for elastic incremental eval-
uation, and propose several engine optimizations for superior performance.

4. We provide an extensive experimental evaluation validating the utility of our contribution.

5.2 Background

In this section, we use our running example to explain the background of standard and incre-
mental Datalog evaluation. Recall, from Section 2.3, our running example, which encodes a
pointer analysis in the form of Datalog rules. This is an ideal scenario where incremental eval-
uation may provide some benefit, where each change to the source program can be encoded as
an incremental update to the Datalog input.

5.2.1 Semi-Naïve Evaluation

Section 2.4.2 describes the standard bottom-up semi-naïve evaluation algorithm. Here, we intro-
duce an additional notation to describe the new knowledge optimization in a way consistent with
the remainder of this chapter. We introduce an analog for the immediate consequence operator,
which incorporates the new knowledge optimization of semi-naïve evaluation. Note that this
notation is adapted from [49]. We call this new operator the rule evaluation operator, or Π:

ΠP [I | ∆] =

{
t

∣∣∣∣ t :− t1, . . . , tn is an instantiated rule in P
where {t1, . . . , tn} ⊆ I and {t1, . . . , tn} ∩∆ ̸= ∅

}
Under this definition, ΠP is analogous to the immediate consequence operator, where it

computes head tuples resulting from instantiated rules where all body tuples are in I, but it
only applies where at least one body tuple is also in ∆. For the rest of this chapter, the program

5.2 Background 71

P is omitted from ΠP where it is clear. The dependence on ∆ is the new knowledge optimization
in semi-naïve evaluation.

Using the rule evaluation operator Π, the semi-naïve evaluation algorithm is presented in
Algorithm 4 for a single stratum. The inputs for the algorithm are P , the set of Datalog rules
forming the stratum, and E, the input set of tuples (since this is a single stratum, the input may
be EDB tuples or tuples from earlier strata). This presentation of the algorithm differs from
Algorithm 2 only in line 4, where we use the Π operator. By using the Π operator to require
that at least one body tuple for each rule derivation is contained in ∆k−1, the algorithm ensures
that new tuples are only generated if at least one body tuple was new in the previous iteration
and thus is functionally identical to Algorithm 2.

Algorithm 4 Semi-Naïve(P , E)
1: ∆0 ← E

2: for all k ∈ {1, 2, . . .} do
3: Ik−1 ←

⋃
0≤i<k ∆i

4: ∆k ← ΠP [Ik−1 | ∆k−1] \ Ik−1

5: if ∆k = ∅ then
6: return Ik−1

7: end if
8: end for

5.2.2 Incremental Datalog Evaluation

As discussed in Section 2.4.2, incremental evaluation is a procedure that updates the result of
a Datalog computation, given some changes (inserted or deleted tuples) to the input, without
performing a full recomputation. An incremental evaluation proceeds in epochs, where each
epoch represents one round of inserting or deleting tuples from the input and computing the
new result and incremental state. We refer to the insertions and deletions comprising the update
as a diff. For the workflow in Figure 5.2c, each Ik represents the result of epoch k, and each
∆Ek→k+1 represents the diff consisting of insertions and deletions such that ∆Ek→k+1 applied
to Ek results in Ek+1. The following definition formally defines the problem of incremental
evaluation:

Definition 5.2.1 (Incremental Evaluation). Given a Datalog program P , an input data set E,
the result P (E), an insertion set E+, and a deletion set E−, compute the result P ((E ∪ E+) \ E−).

This chapter also discusses how the size of an incremental update impacts its performance.
The following definition of impact forms a measure for the size of an incremental update, which
coincides with a similar definition in [85]. Typically, higher impact changes result in greater
computational overhead.

Definition 5.2.2 (Incremental Update Impact). The impact of an update is the number of IDB
tuples changed as a consequence of the update, i.e., ∆I.

72 Chapter 5: Elastic Incremental Evaluation for Datalog

Note that while the state-of-the-art incremental evaluation strategies, such as DRed [47], its
related strategies [81, 82, 118], and counting-based algorithms [50, 49], have proven worthwhile
for applications where each update has a small impact on the computed result, we have observed
that this assumption does not hold in general for all incremental workloads.

For instance, consider our running example. We may remove line 11, superuser = sec; in
Figure 2.2a, as part of an update to the software. This removed line would result in the EDB
tuple assign(superuser,sec) being removed. However, the propagation of the pointer relation-
ship from sec to superuser is already performed through the load/store pair admin.session

= sec; and superuser = admin.session;. Therefore, no IDB tuples would be affected by the
removal of line 11, and thus, this is a very low-impact update.

On the other hand, consider removing line 7, admin.session = ins;, which would cause
the tuple store(admin,session,ins) to be removed. In this case, the pointer relationship of
ins would no longer be propagated to superuser. As a result, superuser would no longer
alias with ins and userSession. Therefore, multiple IDB tuples are affected by the removal of
line 7, and thus, this is a higher impact update. This illustrates that even a single EDB tuple
being removed as part of an incremental update results in different impacts. In these situations
where both low- and high-impact updates may be present, current state-of-the-art incremental
evaluation strategies may not be effective.

5.3 Current Incremental Evaluations

This section describes a current state-of-the-art incremental evaluation algorithm with some
novel variations. The main idea of incremental evaluation algorithms, including this one, is to
maintain an incremental state along with the normal set of output tuples. For the algorithm
presented in this section, the incremental state is a pair of numbers per tuple, where the first
number represents the fixpoint iteration in which the tuple is derived, and the second represents
a count for the number of derivations for the tuple in that iteration. Importantly, the same
tuple may be derived in multiple different iterations by different rule instantiations, and so
this incremental state maintains all derivations in all iterations for each tuple up to fixpoint.
We name this encoding the dense incremental evaluation due to this property of maintaining
derivations in every iteration where a tuple is derived, in contrast to the elastic (or sparse)
algorithm presented in Section 5.4.

Algorithmically, the encoding for dense incremental evaluation is very similar to current state-
of-the-art incremental evaluation algorithms using a full counting approach [50, 49]. Therefore,
the purpose of this section is to present the algorithm using our notation, along with some minor
improvements and optimizations.

We introduce some notation for describing incremental evaluations. The main important
feature of this notation is to describe a counting multiset of tuples per fixpoint iteration. To
describe the notation formally, we first define a sequence of sets ⟨D1, D2, . . .⟩ where set Dk

denotes the set of rule instantiations. The set Dk = {(t :− t1, . . . , tn)} contains all the rule
instantiations that are computed in iteration k. The derivation count of tuple t in iteration k is

5.3 Current Incremental Evaluations 73

the number of rule instantiations (t :− t1, . . . , tn) whose head is t.
While Dk is the explicit representation of rule evaluations that describes our incremental

evaluation framework, it can be rather cumbersome and unnecessary for explaining the algo-
rithms. Therefore, for the sake of simplicity, we define N# as a sequence of counting multisets
for describing the derivation counts of tuples. We use the standard definition of multisets, where
each N#

k = {(t 7→ c)} denotes the number of rule instantiations t :− t1, . . . , tn for a tuple t in
Dk. For notational convenience, we will express the elements with multiplicities t 7→ c as tc, and
we use Nk to denote the set projection of N#

k .

5.3.1 Bootstrap Algorithm

Recall, from Figure 5.2, that our elastic incremental evaluation strategy contains two algo-
rithms: a bootstrap and an update algorithm. Therefore, we also adapt this contribution to
dense incremental by introducing a specialized bootstrap stage which accelerates the initiation
of an incremental evaluation. The bootstrap algorithm is used when computing an epoch from
scratch to produce a computational state for incremental evaluation, which can then be used in
subsequent epochs by running the update algorithm (Section 5.3.2).

To illustrate the dense bootstrap algorithm, we use the running example. Here, iteration 0
contains the input tuples, the same as semi-naïve evaluation, with each tuple having a count of
one.

N#
0 =



new(admin,L1)1, new(sec,L2)1, new(ins,L3)1, new(userSession,nullptr)1,

new(superuser,nullptr)1, store(admin,session,ins)1,

store(admin,session,sec)1, load(superuser,admin,session)1,

assign(userSession,ins)1, assign(superuser,sec)1,

assign(superuser,userSession)1


In iteration 1, we apply the non-recursive rule r1. In this case, all tuples have a count of 1,

since this rule creates initial vpt relationships from the tuples in new:

N#
1 =

{
vpt(admin,L1)1, vpt(sec,L2)1, vpt(ins,L3)1,

vpt(userSession,nullptr)1, vpt(superuser,nullptr)1

}
In iteration 2, however, the counting semantics causes a divergence from the standard semi-naïve
evaluation. Here, the tuple vpt(superuser,L2) is actually derivable in two different ways:

1. vpt(superuser,L2) :- assign(superuser,sec), vpt(sec,L2)., and

2. vpt(superuser,L2) :- load(superuser,admin,session), store(admin,session,sec),

vpt(sec,L2), vpt(admin,L1), vpt(admin,L1).

Therefore, vpt(superuser,L2) has a count of 2 in iteration 2:

N#
2 =

{
vpt(userSession,L3)1, vpt(superuser,L2)2, vpt(superuser,L3)1

}
Now, in the third iteration, the tuple vpt(superuser,L3) can be derived alternatively as

74 Chapter 5: Elastic Incremental Evaluation for Datalog

vpt(superuser,L3) :- assign(superuser,userSession), vpt(userSession,L3).

In the elastic algorithm, this derivation would be excluded since the tuple already exists in N#
2 .

However, in the dense algorithm, this new derivation is included, and thus

N#
3 =

{
vpt(superuser,L3)1

}
While iteration 3 includes the tuple vpt(superuser,L3), this is not a new tuple since it

already existed in iteration 2. Therefore, the set of tuples does not include any new tuples, and
thus a fixpoint has been reached, and so the evaluation ends.

Algorithm 5 DenseBootstrap(P,E)

1: N#
0 ← {(t1) | t ∈ E}

2: for all k ∈ {1, 2, . . .} do
3: Nk−1 ← Supp(N#

k−1) \ Ik−2 ▷ When k = 1, I−1 = ∅
4: Ik−1 ← ∪0≤i≤k−1Ni

5: N#
k ← {(t

v) ∈ Π#[Ik−1 | Nk−1]}
6: if Supp(N#

k) ⊆ Ik−1 then
7: return (E,N#)

8: end if
9: end for

The dense bootstrap algorithm is presented in Algorithm 5. The overall structure is similar
to semi-naïve evaluation but with the addition of operations to maintain the counting multisets
of tuples. The main operator that we introduce in addition to semi-naïve evaluation is a counting
version of the rule evaluation operator. To define this, we first introduce a version of the rule
evaluation operator that computes sets of rule instantiations representing different derivations
for a tuple:

ΠD
P [I | Iin] =

{
(t :− t1, . . . , tn)

∣∣∣∣ t :− t1, . . . , tn in P where {t1, . . . , tn} ⊆ I
and {t1, . . . , tn} ∩ Iin ̸= ∅

}
Using the above definition, we can define a counting version that computes the number of

derivations for each tuple:

Π#
P [I | Iin] =

{
tv

∣∣ v = #rule instantiations (t :− t1, . . . , tn) ∈ ΠD
P [I | Iin]

}
where v is the number of ways that the tuple t can be derived.

We also use a standard operator for the set projection of a multiset: Supp(X) = {t | (tc) ∈
X and c > 0} collects all elements in a multiset with a count of at least 1.

The dense bootstrap algorithm begins by initializing iteration 0 to be equal to the input
(line 1). Then, in the fixpoint loop, the algorithm first computes the equivalent of the delta in
semi-naïve evaluation by taking the set projection of N#

k−1 and excluding any tuples that were
already previously computed in earlier iterations in Ik−2 (line 3). The algorithm then computes

5.3 Current Incremental Evaluations 75

the current full set of tuples (line 4, in practice, the set Ik is maintained throughout, rather
than computed in each iteration). The following step is the rule evaluation step, where the
Datalog rules are evaluated using the counting rule evaluation operator with Ik−1 and Nk−1

(line 5). Note in this dense bootstrap algorithm, tuples computed in earlier iterations are not
excluded, in contrast to the standard semi-naïve algorithm. This allows the dense algorithm
to maintain the derivation counts for all iterations where the tuple is computed. The fixpoint
break condition (line 6) holds if all tuples computed in the current iteration have already been
computed before, and the algorithm returns the result once this fixpoint is reached. Note that the
fixpoint is reached only if no new tuples are computed in the current iteration. Thus, despite the
dense algorithm computing each tuple in potentially multiple iterations, the resulting fixpoint
depends only on the set of tuples and is identical to the fixpoint result in the standard semi-naïve
algorithm.

5.3.2 Incremental Update Algorithm

The dense update algorithm takes a computational state, computed either by the dense bootstrap
algorithm or a previous dense update and applies a set of input changes. These input changes
are represented as a set of input tuples, each marked as either an insertion or deletion. The
algorithm returns a new computational state that reflects the result of applying the updates to
the input set.

The dense update algorithm, presented in Algorithm 6, proceeds similarly to the full counting
algorithm presented by Motik et al. [49]. To present the algorithm, we introduce a further
extension to the rule evaluation operator, which computes tuples inserted or deleted as a result
of an insertion or deletion in the body tuples of the rule instantiation. Recall, from Section 5.3.1
that ΠP [I | Iin], denotes tuples computed by rules in P instantiated from I, with at least one
body tuple also in Iin. This notation is extended with

Π#
P [I | I1 | I2] =

tv
∣∣∣∣∣∣
v = number of rule instantiations t :− t1, . . . , tn
in P where {t1, . . . , tn} ⊆ I and {t1, . . . , tn} ∩ I1 ̸= ∅
and {t1, . . . , tn} ∩ I2 ̸= ∅


This notation computes tuples from rule instantiations in I, where at least one body tuple

is from I1, and also at least one body tuple is from I2. For the update algorithm, I1 and I2

would denote the deltas from semi-naïve evaluation and the diffs from the incremental update,
respectively, allowing the rule evaluation to compute tuples that are newly changed in the current
iteration of the current epoch. Additionally, the algorithm uses ⊕ and ⊖, the standard multiset
addition and subtraction operators for operations involving multisets.

The update algorithm computes the updates to the sequence of multisets N#, which result
from applying the insertions and deletions to the input. The algorithm also makes use of a
number of auxiliary sets: Iok and Ik maintain the full sets of tuples up to iteration k for the
previous and current epoch, respectively, I−k and I+k maintain the tuples that are deleted and
inserted respectively up to iteration k, and No

k and Nk are the set projections of N#o
k and N#

k ,
storing the tuples that are new in iteration k in the previous and current epoch, respectively.

76 Chapter 5: Elastic Incremental Evaluation for Datalog

Algorithm 6 DenseIncrementalUpdate(P, (E,N#o), (E−, E+))

Ensure: E− ⊆ E, E ∩ E+ = ∅
1: N#

0 ← E \ E− ∪ E+

2: N0 ← Supp(N#
0)

3: No
0 ← Supp(N#o

0)

4: I−0 ← E−

5: I+0 ← E+

6: for all k ∈ {1, 2, . . .} do
7: Ik−1 ← ∪0≤i≤k−1Ni

8: Iok−1 ← ∪0≤1≤k−1N
o
i

9: N#
k ← N

#o
k ⊖(Π#[Iok−1 | No

k−1 | I
−
k−1]) ▷ Deletion term

⊖(Π#[(Iok−1 ∩ Ik−1) \Nk−1 | I+k−2 ∩N
o
k−1]) ▷ Deletion update term

⊕(Π#[Ik−1 | Nk−1 | I+k−1]) ▷ Insertion term
⊕(Π#[(Ik−1 ∩ Iok−1) \No

k−1 | I
−
k−2 ∩Nk−1]) ▷ Insertion update term

10: Nk ← Supp(N#
k) \ Ik−1

11: No
k ← Supp(N#o

k) \ Iok−1

12: I−k ← (I−k−1 \Nk) ∪ (No
k \ Ik)

13: I+k ← (I+k−1 \N
o
k) ∪ (Nk \ Iok)

14: if Nk = ∅ then
15: return (E \ E− ∪ E+,N#)

16: end if
17: end for

The algorithm is presented for a single stratum and takes the state of the previous epoch
(E,N#) and the incremental updates (E−, E+) to be applied to E. The initialization phase
(lines 1 to 5) prepares the inputs by applying the diffs E− and E+, storing the result in the
state for iteration 0, N#

0 .
In the fixpoint loop, the algorithm proceeds by computing the current full state of the

database, both for the current epoch and the previous epoch (lines 7 and 8). As with the boot-
strap algorithm, in practice, these sets are maintained throughout the running of the algorithm
rather than computed in each iteration.

The rule evaluation in line 9 is split into four terms. The deletion term captures all tuples
that are deleted in iteration k as a result of a body tuple in a rule derivation being deleted. Here,
we consider only derivations where one tuple is in delta (No

k−1) and also one tuple is deleted
(in I−k−1). The deletion update term captures the case where a derivation is updated so that
it now occurs in an earlier iteration. For example, consider a derivation t :- t1, t2, where
t1 is derived in iteration 4 and t2 is derived in iteration 2. In this case, t would be derived in
iteration 5. However, in the current epoch, if an insertion leads to t1 being derived in iteration
1, then t would now be derived in iteration 3. Hence, to ensure that only unique derivations
are captured, the deletion update term would remove t from iteration 5. This deletion update
term achieves this with I+k−2∩N

o
k−1, which states that a tuple in the delta in the previous epoch

5.4 Elastic Incremental Evaluation 77

(No
k−1), but inserted in an earlier iteration in the current epoch (I+k−2), is to be deleted since its

iteration number is ‘updated.’ The insertion and insertion update terms act in the same way as
the deletion and deletion update terms but for processing insertions.

After the rule evaluation is processed, lines 10 and 11 compute the deltas for the current
and previous epoch, respectively, in preparation for the next iteration. Here, there is an explicit
set minus to exclude tuples already existing before iteration k to ensure that the deltas contain
only tuples that were new in the current iteration.

The algorithm continues by updating the I−k and I+k sets (lines 14 and 15). Computing I−k
(line 14) takes the deletion set from the previous iteration I−k−1 and excludes the tuples that are
newly computed in the current iteration Nk, along with tuples that are deleted in the current
iteration (No

k \ Ink). Similarly, computing I+k (line 15) takes the insertion set from the previous
iteration and excludes tuples that already existed in the current iteration in the previous epoch
(since these tuples already existed, so are not newly inserted in the current epoch), along with
tuples that are inserted in the current iteration.

Since the dense incremental evaluation algorithm is adapted from existing algorithms, we
refer to [49] for proofs of correctness.

5.4 Elastic Incremental Evaluation

This section describes our novel encoding and algorithms for elastic incremental evaluation.
Recall, from Section 5.3, that the computational state in previous approaches [50, 49] involves a
vector of numbers per tuple in the IDB. Each number in the vector represents a count in some
fixpoint iteration. In the worst case, the length of the vector is determined by the number of
iterations m in the fixpoint computation. Hence, the total state may exhibit a worst-case space
complexity of O(m|I|) where |I| is the size of the output.

In contrast, our elastic approach maintains a lightweight computational state consisting of
two numbers per tuple. The first number is a derivation count, and the second number is the
iteration in which the tuple is first derived. The derivation count represents the number of ways
that the tuple can be derived in the iteration when it is first derived and allows the reuse of
computation in the next epoch. Therefore, our encoding is a sparse version of the vector of
numbers in previous approaches, keeping only the first iteration rather than the whole vector.
As a result, the worst-case space complexity of this encoding is O(|I|).

With our lightweight computational state, we can switch between Bootstrap and Update to
adapt to lightweight and heavyweight updates accordingly. When given an incremental update,
we provide a heuristic for switching between both strategies. We first attempt the Update
strategy. If it times out (the timeout is set to some fraction of the previous Bootstrap’s runtime
strategy, i.e., a switching parameter), we discard its partial state and produce the output and
computational state from scratch using Bootstrap. The timeout is dependent on the application
and needs to be fine-tuned appropriately. In contrast, previous approaches have a single strategy
and cannot adapt to light and heavy updates.

In this section, we use the same notation introduced in Section 5.3, where N#
k is a multiset

78 Chapter 5: Elastic Incremental Evaluation for Datalog

containing tuples computed in iteration k, where the multiplicity of each tuple represents the
number of its derivations in iteration k.

5.4.1 Bootstrap Algorithm

Our elastic incremental evaluation approach is structured similarly to the dense approach, with
separate bootstrap and update algorithms. This section presents the Bootstrap algorithm, which
is a specialized counting algorithm that efficiently computes the sequence of multisets from
scratch, mimicking a semi-naive evaluation while also producing the incremental computation
state.

For instance, consider our running example. In the initial phase, the input E becomes
iteration 0, where the counting semantics mean that every tuple has a count of 1. Therefore,

N#
0 =



new(admin,L1)1, new(sec,L2)1, new(ins,L3)1, new(userSession,nullptr)1,

new(superuser,nullptr)1, store(admin,session,ins)1,

store(admin,session,sec)1, load(superuser,admin,session)1,

assign(userSession,ins)1, assign(superuser,sec)1,

assign(superuser,userSession)1


Iterations 1 and 2 are identical to the dense algorithm. Therefore,

N#
1 =

{
vpt(admin,L1)1, vpt(sec,L2)1, vpt(ins,L3)1,

vpt(userSession,nullptr)1, vpt(superuser,nullptr)1

}
N#

2 =
{
vpt(userSession,L3)1, vpt(superuser,L2)2, vpt(superuser,L3)1

}
In iteration 3, the elastic bootstrap diverges from the dense bootstrap algorithm. The tuple

vpt(superuser,L3) would be derivable through the following rule instantiation:

vpt(superuser,L3) :- assign(superuser,userSession), vpt(userSession,L3).

However, this tuple already exists in N#
2 , and thus is not included in the elastic encoding.

Therefore, N#
3 = N#

2 , and so a fixpoint has been reached and the Datalog evaluation ends.
Algorithm 7 presents the lightweight bootstrap algorithm for a single stratum. Its structure

is almost identical to the dense bootstrap algorithm. The algorithm begins by initializing N#
0

to be equal to E (line 1). In the fixpoint loop, the algorithm first creates a set projection of the
current iteration’s multiset (line 3). The algorithm also computes the full state of the relations up
to iteration k−1 (line 4). These two auxiliary sets, Nk−1 and Ik−1, are used in the rule evaluation
on line 5. This rule evaluation computes all tuples that are new in the current iteration and
excludes any tuples that were computed in earlier iterations. By excluding existing tuples, the
algorithm maintains the sparsification property, exhibiting a space complexity of O(|I|). The
algorithm exits and returns the evaluation state (E,N#) (line 6) if no new tuples are generated
in the current iteration, which is checked via the emptiness of the set projection of N#

k .
In contrast to the dense bootstrap algorithm, the elastic algorithm excludes tuples in previous

iterations during the rule evaluation step (line 5), which maintains the sparsification invariant.
As a result, tuples in previous iterations no longer need to be excluded when computing the
delta (line 3), as is done in the dense bootstrap algorithm.

5.4 Elastic Incremental Evaluation 79

Algorithm 7 Bootstrap(P , E)

1: N#
0 ← {(t1) | t ∈ E}

2: for all k ∈ {1, 2, . . .} do
3: Nk−1 ← Supp(N#

k−1)

4: Ik−1 ← ∪0≤i≤k−1Ni

5: N#
k ← {(t

v) ∈ Π#[Ik−1 | Nk−1] | t /∈ Ik−1}
6: if Supp(N#

k) = ∅ then
7: return (E,N#)

8: end if
9: end for

Correctness. To demonstrate the correctness of Algorithm 7, we need to show that it com-
putes the same resulting set of tuples as standard semi-naïve evaluation (Algorithm 4). To do
this, we need to demonstrate two basic properties: (a) each Nk of Bootstrap is equal to ∆k of
semi-naïve, and (b) both Bootstrap and semi-naïve evaluation terminate after the same number
of iterations.

To show this, we introduce the following lemma:

Lemma 5.4.1. Given a Datalog program P , for all A,B such that B ⊆ A, Supp(Π#
P [A | B]) =

ΠP [A | B].

This property can be shown since a tuple t ∈ ΠP [A | B] if and only if there is a rule
instantiation that computes it. If this is the case, then the same rule instantiation also fits
Π#

P [A | B] with a count of at least one. As a corollary, we can show that Bootstrap and
semi-naïve both produce the same set of tuples in each iteration.

Lemma 5.4.2. Given a Datalog program P and an input set E, each Ik−1 of Bootstrap is equal
to Ik−1 of semi-naïve.

The proof is by induction over k, since Supp(N#
i) = ∆i (from Lemma 5.4.1) for each iteration

i, then each iteration’s result must be identical to semi-naïve. Note that both Bootstrap and
semi-naïve terminate after the same number of iterations, since Supp(N#

i) = ∆i for every
iteration i, and therefore Supp(N#

i) = ∅ if and only if ∆i = ∅. Therefore, both algorithms
terminate after the same number of iterations and thus produce the same set of resulting tuples.

5.4.2 Incremental Update Algorithm

The Update algorithm is a procedure that takes a computational state, either computed by
Bootstrap or by a previous Update, and a set of changes to the inputs. The algorithm returns
the updated computational state after applying the input changes.

The Update algorithm produces a computational state N#
k from the computational state N o

k

of the previous epoch, following the iterations of the previous epoch’s fixpoint. In each iteration,
the algorithm applies the insertions and deletions resulting from the given changes to the input.

80 Chapter 5: Elastic Incremental Evaluation for Datalog

For instance, consider the running example, where we remove line 11, superuser = sec;,
and insert a new line, userSession = admin.session;, as part of an update to the source
code. As a result, the EDB tuple assign(superuser,sec) will be removed, and a new tuple
load(userSession,admin,session) will be inserted as part of an incremental update. This
incremental update can be expressed as the following diff:

∆E =
{
assign(superuser,sec)−1, load(userSession,admin,session)+1

}
After applying the above diff, iteration 0 is as follows, with the newly inserted tuple high-

lighted in blue and the deleted tuple highlighted in red:

N#
0 =



new(admin,L1)1, new(sec,L2)1, new(ins,L3)1, new(userSession,nullptr)1,

new(superuser,nullptr)1, store(admin,session,ins)1,

store(admin,session,sec)1, load(superuser,admin,session)1,

assign(userSession,ins)1, load(userSession,admin,session)1,

assign(superuser,userSession)1, assign(superuser,sec)0


In iteration 1, the input for the non-recursive rule (i.e., the relation new) doesn’t change, thus
the result is identical to the bootstrap above:

N#
1 =

{
vpt(admin,L1)1, vpt(sec,L2)1, vpt(ins,L3)1,

vpt(userSession,nullptr)1, vpt(superuser,nullptr)1

}
In iteration 2, however, the deletion of assign(superuser,sec) means that the tuple

vpt(superuser,L2) can no longer be derived from the following rule instantiation:

vpt(superuser,L2) :- assign(superuser,sec), vpt(sec,L2).

Meanwhile, the insertion of load(userSession,admin,session) means that a new tuple,
vpt(userSession,L2), can now be derived from

vpt(userSession,L2) :- load(userSession,admin,session), store(admin,session,sec),

vpt(sec,L2), vpt(admin,L1), vpt(admin,L1).

Therefore, the diff in iteration 2 can be expressed as

{vpt(superuser,L2)−1, vpt(userSession,L2)+1}

The result for iteration 2 after applying this diff is

N#
2 =

{
vpt(userSession,L2)1, vpt(userSession,L3)1,

vpt(superuser,L2)1, vpt(superuser,L3)1

}
At this point, no new tuples can be further derived, either by tuples that already existed pre-

viously or by tuples that are newly inserted. Therefore, a fixpoint is reached, and the evaluation
terminates.

Our novel sparse computational state requires some notion of re-discovery since a tuple is
only kept track of in its first iteration. If a tuple is deleted in its first iteration, it may still be

5.4 Elastic Incremental Evaluation 81

derivable in a later iteration. In this case, the Update algorithm re-discovers whether the tuple
is either derived in a later iteration or is truly deleted from the IDB. This re-discovery process
is a notion of provenance [55, 4], where we find derivations for tuples that are deleted in earlier
iterations.

The incremental update algorithm uses the same extended notation for rule evaluation as
introduced in Section 5.3. Recall that the following operator derives tuples from rule instan-
tiations where at least one body tuple is in I1, and also at least one body tuple is in I2. The
intention is that I1 represents the deltas between iterations and I2 represents the diffs between
epochs.

Π#
P [I | I1 | I2] =

tv
∣∣∣∣∣∣
v = number of rule instantiations t :− t1, . . . , tn
in P where {t1, . . . , tn} ⊆ I and {t1, . . . , tn} ∩ I1 ̸= ∅
and {t1, . . . , tn} ∩ I2 ̸= ∅


Like in the dense update algorithm, this elastic update algorithm also makes use of a number

of auxiliary sets: Iok and Ik maintain the full sets of tuples up to iteration k for the previous
and current epoch, respectively, I−k and I+k maintain the tuples that are deleted and inserted,
respectively up to iteration k, and No

k and Nk are the set projections of N#o
k and N#

k , storing
the tuples that are new in iteration k in the previous and current epoch, respectively.

Algorithm 8 is presented for a single stratum and takes the state of the previous epoch
(E,N#o) and the incremental update (E−, E+) consisting of a set of tuples to be deleted and
a set of tuples to be inserted, respectively. Note that N# may be the IDB sequence from
the bootstrap stage or the result of a previous incremental update. The algorithm begins by
initializing the input state by applying E− and E+ and storing the result in N#

0 (line 3). Then,
the algorithm initializes the sets I−0 and I+0 to be the updates in iteration 0.

In the fixpoint loop, the rule evaluation on line 10 is the core part of this algorithm. This step
starts with the multiset of tuples from the previous epoch and applies deletions and insertions
resulting from applying Datalog rules with the insertions and deletions for the current epoch.
This step is split into three terms: the deletion term, the insertion term, and the re-discovery
term. The deletion term, Π#[Iok−1 | No

k−1 | I
−
k−1] \ I

o
k−1, computes tuples that are deleted in the

current iteration as a result of a derivation where the body contains both a tuple in the delta
(No

k−1) and a deleted tuple (I−k−1). The set minus notation excludes tuples that were in earlier
iterations in the previous epoch, preventing over-deletion since the tuples would not be present
in the current iteration due to sparsification. The insertion term, Π#[Ik−1 | Nk−1 | I+k−1] \ Ik−1,
computes tuples that are inserted as a result of the body of a derivation containing an inserted
tuple. Tuples that already exist in previous iterations (i.e., tuples that are contained in Ik−1) are
excluded to maintain the sparsification invariant. The re-discovery term, I−k−1 ∩Π[I

o
k−1 ∩ Ink−1 |

Nk−1], computes tuples that are deleted in previous iterations I−k−1, but where an alternative
derivation exists in the current iteration. In other words, the re-discovery term applies in the
situation where a tuple is deleted from some iteration but can still be derived in a later iteration.
In this case, the re-discovery term computes this later derivation.

The sparsification term (line 11) does not perform any rule evaluation but excludes tuples
from iteration k that were inserted in an earlier iteration (as a result of a new derivation). These

82 Chapter 5: Elastic Incremental Evaluation for Datalog

Algorithm 8 Update(P , (E,N#o), (E−, E+))

Ensure: E− ⊆ E, E ∩ E+ = ∅
1: N#

0 ← E \ E− ∪ E+

2: N0 ← Supp(N#
0)

3: No
0 ← Supp(N#o

0)

4: I−0 ← E−

5: I+0 ← E+

6: for all k ∈ {1, 2, . . .} do
7: Ik−1 ← ∪0≤i≤k−1Ni

8: Iok−1 ← ∪0≤1≤k−1N
o
i

9: *▷ Here, A \B denotes {(tv) ∈ A | t /∈ B}
10: N#

k ← N
#o
k ⊖(Π#[Iok−1 | No

k−1 | I
−
k−1] \ I

o
k−1) ▷ Deletion term

⊕(Π#[Ik−1 | Nk−1 | I+k−1] \ Ik−1) ▷ Insertion term
⊕(I−k−1 ∩Π#[Iok−1 ∩ Ik−1 | Nk−1] \ Ik−1) ▷ Re-discovery term

11: N#
k ← {(t

v) ∈ N#
k | t /∈ I

+
k−1}

12: Nk ← Supp(N#
k)

13: No
k ← Supp(N#o

k)

14: I−k ← (I−k−1 \Nk) ∪ (No
k \ Ik)

15: I+k ← (I+k−1 \N
o
k) ∪ (Nk \ Iok)

16: if Nk = ∅ then
17: return (E \ E− ∪ E+,N#)

18: end if
19: end for

tuples should be deleted to maintain the sparsification invariant that a tuple is only present in
a single iteration in any given epoch.

The algorithm continues by updating the I−k and I+k sets (lines 14 and 15). Computing I−k
(line 14) takes the deletion set from the previous iteration I−k−1 and excludes the tuples that are
newly computed in the current iteration Nk, along with tuples that are deleted in the current
iteration (No

k \ Ink). Similarly, computing I+k (line 15) takes the insertion set from the previous
iteration and excludes tuples that already existed in the current iteration in the previous epoch
(since these tuples already existed, so are not newly inserted in the current epoch), along with
tuples that are inserted in the current iteration.

The algorithm exits if we have reached a fixpoint and the current iteration is identical to the
previous iteration, i.e., if N#

k is empty (checked via emptiness of the set projection, in line 16).

Correctness. To show the correctness of our incremental update algorithm, we must show that
it computes the same sequence of multisets as if we had applied Bootstrap to the altered input.
In other words, we need to show that given a Datalog program P , an input set E, a deletion set
E−, and an insertion set E+, computing the result directly via Bootstrap(Eb = E \ E− ∪ E+)

is equal to Update(Bootstrap(E), (E−, E+)). The central parts of the algorithm computing

5.4 Elastic Incremental Evaluation 83

these results are lines 10 and 11. Before the final correctness proof, we need some intermediate
properties of the Nk sets and the I− and I+ sets. The following important properties are that
the validity properties of the E sets (i.e., that E+ ∩ E = ∅ and E− ⊆ E) also hold for the
Io, I−, and I+ sets during the incremental update algorithm. Similar properties relating I−

and I+ sets to the current epoch’s I sets are also required. The eventual goal is to show that
Ik = Iok \ I

−
k ∪ I

+
k for each iteration k, which is an important result for showing the correctness

of the rule evaluations.

Lemma 5.4.3. For each iteration k, the I−k and I+k sets are correct in that (1) I−k ⊆ Iok and
I−k ∩ Ik = ∅, and (2) I+k ∩ I

o
k = ∅ and I+k ⊆ Ik.

Proof. This proof is by induction over the iterations. For k = 0, I−0 = E− and I+0 = E+ by
definition, so properties (1) and (2) hold.

The induction hypothesis is that for iteration k − 1, we have I−k−1 ⊆ Iok−1, I
−
k−1 ∩ Ik−1 = ∅,

I+k−1 ∩ I
o
k−1 = ∅, and I+k−1 ⊆ Ik−1.

For property (1), we show I−k ⊆ Iok . Consider line 14 of Algorithm 8, where I−k ← (I−k−1 \
Nk)∪(No

k \Ik). In the first part of the union, I−k−1 ⊆ I
o
k−1 by the induction hypothesis. Therefore,

also I−k−1 ⊆ Iok , since Iok−1 grows monotonically. In the second part of the union, No
k ⊆ Iok by

definition of Iok . Therefore, I−k ⊆ I
o
k .

To show that I−k ∩Ik = ∅, consider the same line. In the first part of the union, I−k−1∩Ik−1 = ∅
by the induction hypothesis. We then exclude Nk, and since Ik = Ik−1 ∪Nk by definition, then
(I−k−1 \Nk) ∩ Ik = ∅. In the second part of the union, we exclude Ik. Therefore, I−k ∩ Ik = ∅.

Property (2) holds by similar arguments on line 15.

As a corollary, we can show that the I− and I+ sets are correct.

Corollary 5.4.4. For each iteration k, we have Ik = Iok \ I
−
k ∪ I

+
k .

Proof. We first show that Iok \ Ik = I−k by showing both directions of inclusion. The reverse
direction, i.e., that I−k ⊆ I

o
k\Ik is a direct corollary of Lemma 5.4.3, that I−k ⊆ I

o
k and I−k ∩Ik = ∅.

For the forward direction, consider some tuple t ∈ Iok \ Ik. Then, t must be in some No
i \ Ik for

some i ≤ k. Since Ii ⊆ Ik, t is also in No
i \ Ii. Therefore, t ∈ I−i . Also, t cannot be removed

from I− in a later iteration, since t /∈ Ik, and therefore, t ∈ I−k .
We have shown both directions of inclusion, and therefore, Iok \ Ik = I−k . By a similar

argument, Ik \ Iok = I+k . From these equalities:

Iok \ I−k ∪ I
+
k = Iok \ (Iok \ Ik) ∪ (Ik \ Iok)

= (Iok ∩ Ik) ∪ (Ik \ Iok) = Ik

It remains to be shown that Update is correct. Our criteria for correctness is that it computes
the same sequence of multisets as if we had applied the bootstrap algorithm to the updated input,
i.e., that the multisets N#

i as computed by Update and Bootstrap are the same for each iteration
i. The following is the central theorem for our correctness proof.

84 Chapter 5: Elastic Incremental Evaluation for Datalog

Theorem 5.4.5. Given P , E, E−, and E+ as above, N#
i as computed by

Update(P,Bootstrap(P,E), (E−, E+)) is equal to N#
i as computed by Bootstrap(P,E \E−∪E+)

for each iteration i.

The proof of Theorem 5.4.5 is by induction over the iterations, and in each step, it considers
all four parts of lines 10 and 11. By arguments over which sets each tuple is contained in, and
careful consideration of the subset relationships between them, we can show that the counting
multisets are the same as those produced by Bootstrap. The formal proof is as follows:

Proof. For this proof, we mainly consider the underlying sets of derivations rather than the
counting multisets, since the counting multisets do not distinguish between different derivations.
We introduce some new notations to represent sets of derivations: ND

i and NDo
i are the sets of

derivations in iteration i of the current and previous epochs, respectively. Furthermore, we intro-
duce the following notation to convert between derivations and tuples: ϕ((t :− t1, . . . , tn)) := t

takes the head tuple of a derivation. We also denote N#
i computed by Bootstrap to be B#i , to

distinguish it from N#
i computed by Update.

The proof is by induction over the iterations. The initial step, where k = 0, is true since
both B#0 and N#

0 take on the value of E \ E− ∪ E+, where every tuple has a count of 1.
The induction hypothesis is that for all 0 ≤ i < k, we have B#i = N#

i . We consider each of
the four terms in lines 10 and 11. We first need to show that the sets of derivations computed
by these lines are disjoint, so that the algorithm does not double count.

• For the deletion term (we label it (1)), we have the derivations {d ∈ ΠD[Iok−1 | No
k−1 |

I−k−1] | ϕ(d) /∈ I
o
k−1}.

• For the insertion term (labelled (2)), we have derivations {d ∈ ΠD[Ik−1 | Nk−1 | I+k−1] |
ϕ(d) /∈ Ik−1}. Since I+k−1 ∩ I

o
k−1 = ∅ (from Corollary 5.4.4), then (2) ∩ (1) = ∅, since (1)

takes derivations only from Iok−1.

• For the re-discovery term (labelled (3)), we have derivations {d ∈ ΠD[Iok−1∩ Ik−1 | Nk−1] |
ϕ(d) ∈ I−k−1 and ϕ(d) /∈ Ik−1}. Since this takes derivations from Iok−1, and Iok−1∩I

+
k−1 = ∅,

then (3) ∩ (2) = ∅. Also, since I−k−1 ⊆ Iok−1 (from Corollary 5.4.4), we have (3) ∩ (1) = ∅,
since (1) excludes tuples from Iok−1.

• For the sparsification term (labelled (4)), we have N#
k ⊖ I

+
k−1. However, note that this

term is processed after the three other terms. Therefore, it naturally excludes (1), and so
(4) ∩ (1) = ∅. Moreover, we have I+k−1 ⊆ Ik−1 (from Corollary 5.4.4), and so (4) ∩ (3) = ∅
and (4) ∩ (2) = ∅, since both (3) and (2) exclude Ik−1.

Since all 4 terms produce disjoint derivations, the algorithm does not double count when
adding or removing any derivations. Next, we need to prove that for any derivation in NDo

k and
not in ND

k , it is removed by one of the four terms and vice versa.
Consider a derivation d ∈ NDo

k \ ND
k . By definition, d ∈ {d ∈ ΠD[Iok−1 | No

k−1] | ϕ(d) /∈
Iok−1} \ {d ∈ ΠD[Ik−1 | Nk−1] | ϕ(d) /∈ Ik−1}. Then, there are two cases. The first case is
that ϕ(d) ∈ Ik−1. In this case, also ϕ(d) /∈ Iok−1, by our assumption, and so ϕ(d) ∈ I+k−1 (by

5.4 Elastic Incremental Evaluation 85

Corollary 5.4.4). Therefore, d would be removed by the sparsification term which removes all
tuples that are in I+k−1. The second case is that d /∈ ΠD[Ik−1 | Nk−1]. In this case, one of the
body tuples of d is in Iok−1 \ Ik−1 (or in No

k−1 \Nk−1, which implies also that it is in Iok−1 \ Ik−1),
which equals I−k−1 (by Corollary 5.4.4). Therefore, d ∈ ΠD[Iok−1 | No

k−1 | I
−
k−1], and since

ϕ(d) /∈ Iok−1 by assumption, it would be removed by the deletion term.
Now, for the opposite case, consider a derivation d ∈ ND

k \ NDo
k . We want to show that

this derivation is inserted by one of the four terms. By definition, d ∈ {d ∈ (ΠD[Ik−1 | Nk−1] |
ϕ(d) /∈ Ik−1} \ {d ∈ ΠD[Iok−1 | No

k−1] | ϕ(d) /∈ Iok−1}. Like the deletion case, there are two cases.
The first is that at least one of the body tuples of d are in Ik−1 \ Iok−1. Then, this tuple is in
I+k−1, and therefore, d ∈ ΠD[Ik−1 | Nk−1 | I+k−1]. Since ϕ(d) /∈ Ik−1 by assumption, then d will
be inserted by the insertion term. The second case is if ϕ(d) ∈ Iok−1. Then, since ϕ(d) /∈ Ik−1,
ϕ(d) ∈ Iok−1 \ Ik−1 = I−k−1. If the first case doesn’t hold, we know that all of the body tuples are
not in Ik−1\Iok−1, and therefore, they must all be in Iok−1. Therefore, d ∈ ΠD[Iok−1∩Ik−1 | Nk−1].
Since ϕ(d) /∈ Ik−1 by assumption, d would be inserted by the re-discovery term.

Another essential property of our elastic incremental evaluation strategy is the sparsification
invariant, which describes the main difference between our elastic algorithm and the dense
algorithm.

Lemma 5.4.6 (Sparsification Invariant). For each iteration k, the sets Nk are disjoint.

This property ensures that every tuple is only computed in a single iteration, with this
iteration being the earliest one in which it is computed.

Re-discovery Rules as a Notion of Provenance. The re-discovery term in the rule evalu-
ation part of Algorithm 8 (the last term in line 10) is critical for maintaining the sparsification
property of our algorithm. In particular, a tuple may be deleted in some iteration but still be
derivable in a later iteration via a different rule or different body tuples. The re-discovery term
allows the algorithm to recover these tuples in the later iteration.

The re-discovery is performed by the rule evaluation term I−k−1∩Π[I
o
k−1∩Ink−1 | Nk−1], which

states that we compute tuples that were deleted in an earlier iteration (i.e., exist in I−k−1), but
an alternative derivation exists in the current iteration (Π[Iok−1 ∩ Ink−1 | Nk−1]).

Provenance, as described in Chapter 4, can be defined as “discovering the derivations for
a tuple”. In a similar vein, the re-discovery term discovers derivations in the current iteration
for tuples that were deleted in earlier iterations. In particular, for each tuple deleted in an
earlier iteration, the re-discovery term finds derivations from Iok−1 ∩ Ink−1. Since this process
resembles provenance, the re-discovery rules in the Update algorithm are akin to the backward
rule evaluation techniques in Chapter 4.

5.4.3 Stratified Negation and Constraints

Our algorithms thus far have omitted any notion of negation or constraints. However, both
negation and constraints are powerful and common extensions of Datalog. Constraints are a
simpler case than negation, and may take the form of arithmetic constraints such as A < B

86 Chapter 5: Elastic Incremental Evaluation for Datalog

or A != B where A and B are grounded variables (i.e., variables also occurring in a positive
body predicate) or constants. In an instantiated rule, a constraint is satisfied if the instantiated
arithmetic constraint is satisfied. For example,

alias(Var1,Var2) :- vpt(Var1,Obj), vpt(Var2,Obj), Var1 != Var2, Obj != nullptr.

is a rule with arithmetic constraints, and an instantiation of the rule only derives a tuple if the
inequality constraint is satisfied by the values given to Var1 and Var2. Since the truth value of a
constraint never changes (e.g., 1 = 1 is always true, and the semantics of = never changes even
under an incremental update), constraints need no special treatment. A tuple is only computed
if all constraints in the rule hold true, and these constraint semantics do not change.

However, stratified negation is more complicated than simple arithmetic constraints. With
incremental evaluation, the truth value of a negation may change due to tuples being inserted or
deleted from the negated relation, unlike constraints which do not change truth value after an
incremental update. To adapt our Datalog evaluation algorithms to support stratified negation
and constraints, the rule evaluation is extended to support these features. The rule evaluation
operator, Π#, is extended so that

Π#
P [I | Iin] =

tv
∣∣∣∣∣∣
v = #instantiations t :− t1, . . . , tn, !tn+1, . . . , !tn+m, ψ

in P where {t1, . . . , tn} ⊆ I, {t1, . . . , tn} ∩ Iin ̸= ∅,
{tn+1 . . . tn+m} ∩ I = ∅, and ψ is satisfied


where ψ denotes the instantiated arithmetic constraints occurring in the rule. Replacing the rule
evaluation operator in Bootstrap (Algorithm 7) with this extended version allows the algorithm
to support stratified negation and constraints. However, the extension is more involved for
Update since introducing negation also introduces new cases for deleting/inserting tuples. For
example, consider the rule

path(X,Z) :- edge(X,Y), path(Y,Z), !edge(X,Z).

If we have a rule instantiation

path(a,c) :- edge(a,b), path(b,c), !edge(a,c).

where edge(a,c) is inserted as a result of an incremental update, then the head tuple path(a,c)
must be deleted since the negation is no longer satisfied. The opposite situation may arise where
the deletion of a tuple may lead to the consequent insertion of a tuple. Therefore, we further
extend the rule evaluation operator so that

Π#
P [I | I1 | I2, I

′
2] =

t
v

∣∣∣∣∣∣∣∣∣
v = #instantiations t :− t1, . . . , tn, !tn+1, . . . , !tn+m, ψ

in P where {t1, . . . , tn} ⊆ I, {t1, . . . , tn} ∩ I1 ̸= ∅,
{tn+1 . . . tn+m} ∩ I = ∅, ψ is satisfied, and
({t1, . . . , tn} ∩ I2 ̸= ∅ or {tn+1 . . . , tn+m} ∩ I ′2 ̸= ∅)


With this rule evaluation operator, a new tuple is derived if the rule instantiation contains

body tuples from I, where at least one positive body tuple is also in I1, and either there is a

5.5 Implementation in Soufflé 87

positive body tuple in I2 or a negative body tuple in I ′2. Using this notation, the rule evaluation
step of Algorithm 8 (line 10) becomes

N#
k ← N

#
k ⊖ (Π#[Iok−1 | No

k−1 | I−k−1, I
+
0] \ Iok−1)

⊕ (Π#[Ik−1 | Nk−1 | I+k−1, I
−
0] \ Ik−1)

⊕ (I−k−1 ∩Π[Iok−1 ∩ Ik−1 | Nk−1])

where the first and second terms now handle stratified negation. The deletion term, Π#[Iok−1 |
No

k−1 | I
−
k−1, I

+
0] \ Iok−1, now computes tuples that are deleted, either as a result of a deleted

positive body tuple (I−k−1) or an inserted negated body tuple (I+0). We use iteration 0 for the
negated tuples since stratified negation enforces that negations must be from the input of the
current stratum (i.e., from previous strata). Similarly, the insertion term, Π#[Ink−1 | Nk−1 |
I+k−1, I

−
0] \ Ink−1, computes tuples that are inserted either as a result of an inserted positive body

tuple or a deleted negative body tuple. The other parts of the algorithms involve manipulating
and merging relations and are independent of the Datalog rules. Therefore, no changes are
needed to support negation or constraints. Hence, with the extensions to the rule evaluation
presented above, our algorithms fully support Datalog with stratified negation and constraints.

5.5 Implementation in Soufflé

In this section we outline how our approach is integrated in the Soufflé Datalog engine, including
several optimizations to support more efficient incremental evaluation.

5.5.1 Core Implementation

Specialized Data Structures. Soufflé internally uses highly specialized, parallel B-tree data
structures to store relations. For incremental evaluation, we associate each tuple with an it-
eration number and a count in a similar fashion to the provenance annotations required in
Chapter 4. Therefore, we similarly extend the internal data structures to allow for these auxil-
iary attributes. Importantly, these auxiliary attributes may be updated, e.g., if a new derivation
is discovered, the count must be incremented. Thus, we implemented an update mechanism and
adapted the existing optimistic locking mechanism to support parallel operation.

Auxiliary Relations. Auxiliary relations are necessary to represent the tuples that are in-
serted or deleted in Algorithm 8. These auxiliary relations are represented by separate instan-
tiations of the original relations, with prefixes diff_plus and diff_minus, respectively. These
diff_plus and diff_minus relations are not exact analogs of I+ and I−, since diff_plus and
diff_minus may contain tuples where the derivation count is incremented/decremented, rather
than only tuples that are fully inserted/deleted.

Rule Evaluation. We extend the operations used in standard rule evaluation algorithms in
Soufflé to support the extra operations required by the incremental evaluation algorithms. Soufflé
uses nested loop joins for evaluating rules, which incorporate extra conditions and existence

88 Chapter 5: Elastic Incremental Evaluation for Datalog

checks to ensure correctness. For incremental evaluation, further specialized existence checks
are required, e.g., a tuple in diff_minus may not actually be deleted, and only one of its
derivations is deleted. Therefore, we need a specialized existence check that uses its count in
the full relation to determine if the tuple is fully deleted or not. The Datalog rules are then
instrumented for incremental evaluation using these extra operations and auxiliary relations.
Moreover, separate versions of rule instrumentation are required for the Bootstrap and Update
algorithms.

Other Operations. Other operations, such as merges between iterations and a cleanup oper-
ation between epochs, are also required, along with the rule evaluation extensions. In standard
semi-naïve evaluation, at the end of each iteration, new tuples computed in that iteration are
merged into the full relation, and this also becomes the delta for the following iteration. For
incremental evaluation, further operations may take place, e.g., eager computation of the delta
of the previous epoch and eager computation of diff_plus and diff_minus. In between epochs,
the incremental evaluation algorithms also require a cleanup stage, where the diff_plus and
diff_minus relations are merged into the full relations to update the state in preparation for
the following epoch.

5.5.2 Optimizations

Eager vs. Lazy diff_plus and diff_minus. The diff_plus and diff_minus relations
store tuples that are inserted and deleted in the current epoch, respectively. However, there is
extra computation involved with the diff_plus and diff_minus relations in lines 14 and 15
of Algorithm 8. Here, a tuple in diff_plus may not actually be newly inserted - it may be
a new derivation for a tuple that already existed. Similarly, a tuple in diff_minus may not
actually be deleted - an alternative derivation may still hold. Thus, we need to check the full
relation to determine if a tuple in diff_plus or diff_minus is actually inserted or deleted,
respectively. This check may be performed eagerly during the merge step in each iteration,
with results stored in separate relations actual_diff_plus and actual_diff_minus, or lazily
inside the rule evaluation. For the sake of clarity, our algorithms are presented with eager diff
computations, which can be seen in lines 14 and 15. A lazy diff version would incorporate
this computation directly in the rule evaluation. This design decision is a trade-off: eagerly
computing diff_plus and diff_minus may result in wasted computation for tuples that are
not considered in any rules, while lazy computation may mean the same check of the full relation
is performed multiple times for a single tuple, if it occurs in multiple rule derivations. However,
our experiments indicate that this trade-off generally favors eager diffs, where it can amortize
the checks for tuples that occur in multiple rule derivations. For our benchmarks, the difference
is generally within 15% in favor of eager diffs, but it can provide up to 4× speed up in some
situations where tuples are frequently repeated in multiple rule derivations.

Filtering for Re-discovery Rules. The elastic algorithm includes the notion of re-discovery,
which is required due to its sparsification. In the re-discovery rules, the algorithm finds all tuples

5.5 Implementation in Soufflé 89

which have been deleted in an earlier iteration but where an alternative derivation still exists for
the current iteration. Naïvely, this could be done by instrumenting a rule to filter on diff_minus:

R :− diff_minus_R, R1, . . . , Rk.

However, in some cases this can cause a problematic join, if there are few variables in common
between the diff_minus_R atom and the remaining atoms. For example,

R(x, y, z) :− diff_minus_R(x, y, z), R1(x, a), R2(y, a), R3(z, a).

may cause duplication of work in R1(x, a) if there are many tuples in diff_minus_R with the
same x value. Our solution is to divide the diff_minus relation so that it never causes extra
work.

R(x, y, z) :− diff_minus_Rx(x), R1(x, a), R2(y, a),

diff_minus_Ry(y), R3(z, a), diff_minus_Rz(z).

Dividing the diff_minus relations ensures that each variable only acts as a filter and cannot
multiply the work of the other atoms in the rule. Here, the x variable is scheduled first since we
assume that diff_minus_Rx(x) is smaller than R1(x, a). However, the other variables must be
scheduled after their corresponding atom to prevent a cross-product with the previous atom.

This strategy of considering the variables in the filtering atom is inspired by worst-case
optimal joins [119, 120]. These worst-case optimal join algorithms work by considering the
variables in the atoms in some order, in contrast to traditional nested loop join algorithms that
consider an atom order. For our re-discovery rules, this variable-based approach is used only for
the filtering atom since the filtering atom is often performance-critical. Our benchmarks show
that this technique is generally 2.5× faster than the naïve strategy, while in some situations, it
can be up to 15× faster.

Scheduling. Scheduling for join orders plays a vital role in the performance of Datalog rules
[121, 122, 37]. With incremental evaluation, the assumption that the diffs are smaller than
the full relations allows for better heuristics for automatic scheduling. Using this assumption,
scheduling diff_plus or diff_minus first in a rule evaluation generally improves performance
by restricting the size of the search as early as possible. However, care must be taken to avoid
cross-products. For example, consider the following rule:

R(a, d) :− R1(a, b), R2(b, c), diff_minus_R3(c, d).

In this case, moving diff_minus_R3(c, d) to the front of the rule would create a cross-product
with R1(a, b) and may lead to worse performance than the original schedule. Hence, using simple
automatic scheduling techniques, such as maximizing the number of bound variables in each
atom, is crucial to maintain the performance of incremental evaluation.

90 Chapter 5: Elastic Incremental Evaluation for Datalog

5.6 Experimental Evaluation

This experimental section aims to demonstrate the following claims:

• Claim I: Inviability of single incremental evaluation strategies on variable update use
cases.

• Claim II: The elastic incremental evaluation with a simple switch heuristic performs bet-
ter compared to existing single strategy incremental evaluations, both in terms of runtime
and memory usage, over a series of varying sized incremental updates.

Experimental Setup. Our experiments are run on an AMD Threadripper 2990WX machine
with 128 GB memory, running Ubuntu 20.10 with GCC 10.2 used to generate all Soufflé executa-
bles. All experiments are run with 8 threads, and all I/O time is excluded from measurements.

We evaluate three versions of Soufflé: (1) Soufflé: Non-Incremental Soufflé engine. (2)
Soufflé-dense: The dense incremental evaluation algorithm, similar to DDLog, implemented and
optimized for Soufflé. (3) Soufflé-elastic: The implementation of the elastic incremental evalu-
ation strategy. When necessary, we differentiate between elastic-update and elastic-bootstrap
algorithms.

We also compare our approach to an industrial-strength incremental Datalog engine, Differ-
ential Datalog (DDLog) [52], which uses Differential Dataflow [50] as a backend. DDLog with
Differential Dataflow is a state-of-the-art incremental engine that uses a variant of the counting
algorithm.

We perform our evaluations using a set of dynamic Datalog use cases adapted by Frank
McSherry 1 for benchmarking incremental Datalog engines. The use cases are described below:

1. Doop [20]: a points-to program analysis framework for Java programs. This is a subset
of the Doop program analysis library ported to DDLog. This use case contains a large
number of rules and relations with complex recursion.

2. CRDT: an implementation of a conflict-free replicated data type in Datalog. This use case
represents an in-between ruleset with a medium number of rules, relations of moderate
complexity, and arithmetic constraints.

3. Galen [123]: a medical ontology inference task implemented in Datalog. This use case
represents a typical ontological use case consisting of a small number of rules and relations
with a simple recursive structure. However, the joins in Galen can be challenging.

Some basic statistics for the benchmarks are included in Table 5.1. To evaluate the perfor-
mance of incremental evaluation algorithms, we generated update sets of varying sizes for each
benchmark by randomly choosing a subset of EDB tuples that are incrementally deleted and
inserted. We acknowledge that these randomly generated update sets may not be representative
of real-world workloads for these benchmarks, and thus they test only the incremental evaluation
strategy in isolation.

1https://github.com/frankmcsherry/dynamic-datalog

5.6 Experimental Evaluation 91

Table 5.1: Benchmark Statistics

Benchmark Number of rules EDB size IDB size
Doop 90 11,014,960 41,665,029
CRDT 31 259,778 2,668,247
Galen 6 976,552 24,483,561

5.6.1 Single Strategy Incremental Evaluation

0 250 500 750 1000
update size

100

102

104

u
p

d
at

e
ru

n
ti

m
e

(s
)

souffle-dense

souffle-elastic-update

ddlog

(a) Doop

20 40 60 80 100
update size

101

u
p

d
at

e
ru

n
ti

m
e

(s
)

(b) CRDT

0 25000 50000 75000 100000
update size

100

102

u
p

d
at

e
ru

n
ti

m
e

(s
)

(c) Galen

Figure 5.3: Incremental update size vs. runtime. The horizontal line in each figure is the
runtime of non-incremental Soufflé on the respective benchmark, and the upwards arrows indicate
timeouts.

In this set of experiments, we only consider single strategy evaluations; that is, we only
include our Update (elastic-update) evaluation and thus do not switch to Bootstrap. These
experiments do not establish the supremacy of any one technique. Rather, we show that single
strategies are not viable compared to non-incremental evaluation. The results for the runtime
of incremental updates for each evaluation implementation are shown in Figure 5.3, while the
impact sizes are in Table 5.2. These results are computed for one cycle of an update set. An
update set is a randomly selected subset of EDB tuples. A cycle consists of one epoch where the
update set is deleted, followed by one epoch where the update set is inserted. The horizontal
line on each benchmark represents the runtime if non-incremental Soufflé performs the same
task, i.e., running the whole benchmark twice from scratch. For each benchmark, there is a
general trend that larger updates require more runtime. However, this performance is highly
unpredictable, even if the size of the incremental update is constant.

Consider the performance of incremental evaluation for Doop in Figure 5.3a. Here, there are
five separate small update sets, which are each generated by randomly choosing 10 EDB tuples
and running one cycle. These small updates all finished within two seconds, which is vastly faster
than non-incremental Soufflé. For these small incremental updates, all evaluations were very fast
on average due to their very low impact, only affecting up to 25 of the IDB tuples. DDlog and
elastic-update performed well and on par. Our general observation is that incremental evaluation
is highly effective for these lightweight updates. For the 100 update size, the smallest impact was
88 IDB tuples, and the largest impact was 53,816 IDB tuples. As anticipated, this increased the
variability of the results. Elastic-update exhibited large extremities, finishing within 5 seconds

92 Chapter 5: Elastic Incremental Evaluation for Datalog

Benchmark
Size of update
Impact of update

Doop
10 100 400 700 1,000

7, 19, 25 88, 22K, 53K 27K, 82K, 5.2M 49K, 356K, 3.6M 87K, 670K, 6.6M

CRDT
10 40 70 100

3.4K, 13K, 35K 41K, 50K, 61K 64K, 75K, 81K 86K, 89K, 91K

Galen
10 10,000 40,000 70,000 100,000

810, 2.0K, 3.7K 4.3M, 5.7M, 7.0M 21M, 27M, 32M 35M, 41M, 43M 43M, 46M, 54M

Table 5.2: The minimum, median, maximum impact for updates of each size; the impact is the
overall number of IDB tuples inserted or deleted, K denotes thousands, M denotes millions

for the fastest, while more than 5,000 seconds for two update sets. DDLog also had high variance,
with the fastest runtime being 5 seconds and the slowest being 213 seconds, well over the non-
incremental engine time. Curiously, the fastest incremental update was also one of the higher
impact ones, affecting 22,347 IDB tuples, while the slowest affected 140 IDB tuples, indicating
that neither the size of the EDB updates nor the size of the impact is always helpful in predicting
the runtime of the incremental update. While Soufflé-dense was generally faster than DDLog, it
still exhibited a large variance, with runtimes ranging between 1.4 and 18 seconds. For the larger
update sets, containing 400, 700, and 1000 tuples, respectively, all evaluation strategies failed to
compete with non-incremental Soufflé. For example, elastic-update was unable to complete any
of the update sets within the time limit. These timed-out updates contained tuples deep in a
complex recursive structure, indicating that the elastic-update algorithm does not handle these
large impact updates well. Likewise, the counting algorithms implemented in both DDLog and in
Soufflé exhibited generally poor performance compared to non-incremental Soufflé. Furthermore,
these larger updates exhibited even greater variability, particularly for Soufflé-dense.

The results for CRDT, in Figure 5.3b tell a similar story. Here, even small updates consisting
of 10 EDB tuples exhibit unpredictable and poor performance. In comparison to Doop, the
small updates for CRDT have a much larger impact, affecting between 3,444 and 35,130 IDB
tuples. However, even this larger impact is around 1% of the IDB, and even with these overall
small impacts, the runtime of incremental update is considerably slower than re-running the
computation from scratch in Soufflé. Similar to Doop, the performance for larger updates only
gets worse. For updates containing 40 EDB tuples, the runtimes varied between 9 and 13 seconds.
While this variation is smaller than for Doop, the result still indicates that the performance
of incremental evaluation is unpredictable. For larger updates containing 70 and 100 EDB
tuples, DDLog was around 5× slower than non-incremental Soufflé, despite the update being
only around 0.04% of the EDB and impacting only up to 3.4% of the IDB tuples. Update and
Soufflé-dense were both more performant, but still slower than non-incremental Soufflé. The poor
performance of incremental update algorithms may be due to the structure of the Datalog rules
in CRDT. The rules contain several arithmetic inequality constraints, which cannot be indexed,
and are checked after the corresponding value is known in the join. Therefore, incremental
strategies that use indices to limit the computation to updated tuples are ineffective in the
presence of performance-critical inequalities. It is also interesting to note that the impact on

5.6 Experimental Evaluation 93

the IDB tuples was much more consistent for CRDT when compared with Doop. For example,
with updates containing 100 EDB tuples, the impact on IDB tuples ranged between 85,726 and
91,384 tuples. This may be due to the much simpler structure of the CRDT application, which
contains a larger pre-processing stage followed by a very small recursive stratum.

On the other hand, Galen performed far better with DDLog for incremental evaluation. One
reason for this is that Galen has a simple ruleset consisting of only 6 Datalog rules but with
challenging join characteristics. DDLog is better optimized for these joins, and can outperform
Soufflé for these incremental workloads. For small updates consisting of 10 EDB tuples, an incre-
mental update takes between 0.1 and 0.2 seconds, providing far superior performance compared
to a non-incremental engine. Even for medium-sized updates consisting of 10,000 EDB tuples,
DDLog’s incremental update performance is generally faster than non-incremental Soufflé. Only
when we consider larger updates of 40,000, 70,000, and 100,000 EDB tuples, or 4%, 7%, and 10%

respectively, does the performance of incremental evaluation slow down considerably compared
to non-incremental Soufflé. The impact of these larger updates on the IDB is up to 53M tuples,
which is almost double the original IDB size. This impact indicates that not only are most
of the IDB tuples affected, but they are even affected in multiple iterations. Given this large
impact, it is no surprise that the runtime for such an incremental update is slower than simply
recomputing the result from scratch. Overall, DDLog performs well on this benchmark com-
pared to non-incremental Soufflé. For Galen, the Soufflé incremental strategies do not perform
as well. Soufflé-dense is generally an order of magnitude slower for updates than DDLog, due to
unfavorable join orderings. Elastic-update fares even worse, timing out for the larger updates
above 10,000 EDB tuples. This is a result of these updates impacting tuples across multiple
iterations, which the sparsification of the elastic strategy does not handle well.

These results indicate that state-of-the-art single strategy incremental evaluation algorithms
perform well on small impact updates. However, they may be outperformed by a standard non-
incremental Datalog engine for more complex applications or high-impact changes. Overall, we
demonstrate Claim I by highlighting the unpredictability and tendency for degraded performance
of single strategy evaluations on large impact updates compared to non-incremental Soufflé.

5.6.2 Elastic Incremental Evaluation

In this section, we evaluate the performance of our elastic incremental evaluation strategy. That
is, we evaluate the combination of the Update algorithm with Bootstrap. We use an empirically
determined switching parameter of 20% to determine when to use the Update and when to
switch to Bootstrap. That is, if the update time is more than 20% of the previous bootstrap
time, we restart using Bootstrap.

For this experiment, we use example workloads for incremental evaluation, which consists
of 13 epochs. The first epoch is the initial evaluation, then the following 6 epochs are small
updates (containing 10 tuples), with alternating deletion and insertions. These are followed
by one large update (1,000 for Doop, 100 for CRDT, and 100,000 for Galen) in epoch 7, then
followed by another 4 small updates, with a large update as the final epoch. We note that
these patterns may appear in all three of these benchmarks. For Doop, there is a common

94 Chapter 5: Elastic Incremental Evaluation for Datalog

0 1 2 3 4 5 6 7 8 9 10 11 12
epoch

10−1

100

101

102

103

ru
n
ti

m
e

(s
)

souffle

souffle-elastic

souffle-dense

ddlog

(a) Doop

0 1 2 3 4 5 6 7 8 9 10 11 12
epoch

100

101

ru
n
ti

m
e

(s
)

(b) CRDT

0 1 2 3 4 5 6 7 8 9 10 11 12
epoch

100

102

ru
n
ti

m
e

(s
)

(c) Galen

Figure 5.4: Runtimes for an elastic workload. For each benchmark, the first epoch is an initial
evaluation, followed by 6 epochs of small updates, then one large update, then 4 epochs of small
updates, then one large update.

pattern of software updates consisting of a large refactor, followed by several smaller commits
addressing minor comments. For CRDT, an application commonly used for collaborative online
text editing, a large update may result from a large portion of text being moved around, while
a smaller update may result from smaller additions or deletions from the text. For Galen, a
medical ontology application associated with patient diagnosis, a large update may result from
a medical test result being updated, while a smaller update may result from a minor symptom
change.

For Doop, in Figure 5.4a, all of the incremental evaluation strategies are able to effectively
incrementalize for the small updates. However, the main differences across the full workload
result from the bootstrap strategy, with both the initial evaluation and the large updates being
faster or on-par with the state-of-the-art counting strategy. As a result, the elastic incremental
strategy can complete this workload in 245 seconds, compared to 284 seconds for Soufflé-dense
and 467 seconds for DDLog. In comparison, non-incremental Soufflé, which evaluates each
epoch from scratch, achieves 304 seconds for this workload. Thus, this use case demonstrates
that an elastic incremental evaluation is effective for the complex Doop benchmark. Overall,
we demonstrate an amortized net gain compared to non-incremental Soufflé as well as single
strategy evaluations.

For CRDT, in Figure 5.4b, none of the incremental evaluation strategies are effective for
reasons illustrated in Section 5.6.1, even for the small updates. Here, the elastic strategy hits
the 20% heuristic threshold for all updates, despite Update strategy actually being slightly
faster than Bootstrap if it were allowed to run to completion. For this workload, non-incremental
Soufflé completes all epochs in 19 seconds, followed by 25 seconds for the Soufflé-dense, 31 seconds
for Soufflé-elastic, and 56 seconds for DDLog. For this particular application, we conclude that
incremental evaluation is ineffective in general.

For Galen, in Figure 5.4c, the incremental evaluation strategies were able to perform reason-
ably well. For epochs 1 and 5, the elastic update strategy reached the 20% heuristic threshold,
thus triggering a bootstrap. If this threshold were not in place, the elastic update would have
been faster for these small updates. Despite this, Soufflé-elastic is still highly competitive com-
pared to the other incremental evaluation strategies, being able to finish the workload in 384

5.7 Chapter Summary 95

seconds, compared to 445 seconds for DDLog. Soufflé-dense was ineffective for the large updates
for Galen and times out overall. In comparison, non-incremental Soufflé required 370 seconds
for this workload. The results demonstrate that our elastic evaluation is competitive for the
Galen use case.

Overall, the experimental evaluation has validated Claim II by showing a performance im-
provement compared to single strategy incremental evaluation approaches. The limited overhead
of our Bootstrap evaluation makes up for any cost induced by the Update evaluation. We be-
lieve with improved heuristics and tuning, this improvement can be further maximized. On
the other hand, however, these results also demonstrate that incremental evaluations are still
outperformed by the standard non-incremental Soufflé overall. Therefore, there are still vast
opportunities for improvement in incremental evaluation strategies.

Table 5.3: Memory usage for each engine, showing the minimum, average, and maximum memory
usage across all of the update sets

Bench. Engine Min (MB) Avg (MB) Max (MB)
Doop Soufflé 1,759 1,762 1,764

Soufflé-elastic 7,473 7,492 7,505
Soufflé-dense 9,106 9,449 11,387
DDLog 17,381 23,352 27,851

CRDT Soufflé 42 42 42
Soufflé-elastic 335 346 352
Soufflé-dense 328 337 344
DDLog 786 829 858

Galen Soufflé 901 931 960
Soufflé-elastic 5,641 5,672 5,698
Soufflé-dense 14,588 17,974 21,034
DDLog 15,333 20,862 26,461

Along with runtime, another aspect of performance is memory usage. For example, in large
program analysis use cases, memory has been shown to be a limiting factor [23]. Table 5.3
shows the minimum, average, and maximum memory usage across all the update sets for each
benchmark. These results show that non-incremental Soufflé uses the least memory by far
since it does not need to keep the extra state that incremental evaluation requires. Among the
incremental engines, Soufflé-elastic performs best since it only keeps the counts for one iteration
for each tuple. On the other hand, the counting algorithm, both in Soufflé and in DDLog,
requires keeping the count of each tuple for every iteration it is generated in, thus using extra
memory to maintain this additional state.

5.7 Chapter Summary

This chapter has demonstrated the pitfalls of existing incremental evaluation algorithms for
use cases with varying sizes of updates. We have proposed the use of an elastic approach
for incremental evaluation. This elastic approach switches between a low overhead Bootstrap
strategy that targets high impact updates and an Update strategy that targets low impact

96 Chapter 5: Elastic Incremental Evaluation for Datalog

updates. We propose a simple heuristic for switching between the two strategies. Using this
setup, we have shown that the elastic approach is effective in use cases where single strategy
incremental evaluation struggles to perform adequately compared to regular Datalog evaluation.

Chapter 6

Input Debugging with Incremental
Provenance

This chapter discusses the problem of incremental fault localization and debugging. As presented
in Chapter 5, incremental evaluation is becoming more and more suitable for Datalog users to
express incrementally updating computations. However, incremental evaluation can also cause
anomalies introduced between updates, which can be difficult to debug with traditional debug-
ging approaches. Therefore, this chapter introduces an approach that discovers the connection
between output and input tuples to debug these anomalies.

This chapter is organized as follows. Section 6.1 introduces the problem of incremental
debugging in the context of real-world Datalog use cases, while Section 6.2 provides background.
Section 6.3 details our novel approach to providing provenance information for incremental
computation, as a basis for incremental debugging. Section 6.4 discusses our algorithms for
computing a fault localization or input debug suggestion, using incremental provenance and
other techniques. Finally, Section 6.5 provides an experimental evaluation of our technique.

6.1 Fault Localization and Input Debugging

One important area of use cases for Datalog is in bug-finding and analysis tools [20, 124, 21,
22, 16, 125, 19]. In an industrial setting, these tools are deployed in a continuous integration
setup to perform checks and validations after changes are made to a system [115, 126]. Changes
between two analysis runs (aka. epochs) are frequently small and can be effectively processed
by incremental evaluation strategies for Datalog that reuse computations of the previous run,
as described in Chapter 5. In this setup, faults, which can manifest as missing or unwanted
output tuples at the Datalog level, can appear and disappear between these changes, which can
be challenging to diagnose with the complexity of modern bug-finding tools.

For instance, consider the example in Figure 6.1. The diagram shows the use of incremental
evaluation for program analysis use cases. On the left, the source program is updated, resulting
in a change ∆E, which is input to the incremental program analysis ∆P . After computing the
incremental update, some result tuples are unchanged, some are inserted, and some are deleted.

98 Chapter 6: Input Debugging with Incremental Provenance

Source Program1

∆P

Source Program2

∆E ∆I

Unchanged Tuples

Inserted

Deleted
✗

✗

t1

t2

Figure 6.1: A scenario where an incremental update results in faults in the output

However, some of the changes (insertions or deletions) may be unwanted (i.e., the user does not
agree with the change), and hence we can view these as faults that appeared as a result of the
incremental update.

For the problem of incremental debugging, faults manifest in two possible scenarios: (1)
unwanted tuples which appear, such as t1 in the above diagram, or (2) desirable tuples which
disappear, such as t2. To investigate and debug these faults, a system should aid the user
to discover the connection between the faulty output tuples and the input tuples changed as
part of the incremental update. These concepts are an example of the framework of why-
provenance (Section 3.1.1). Why-provenance formalizes the notion of lineage, which describes
the relationship between input and output tuples.

Existing debugging approaches, such as graphs [127] and proof trees (Chapter 4), are designed
and targeted towards the tool developer. Another example is Algorithmic Debugging [29], a
general framework for debugging logic programs and diagnosing faults based on execution traces
within the Datalog program. However, these explanations describe the execution of the Datalog
rules and thus may be unintelligible for end-users who lack a deep understanding of a tool’s
implementation.

For an end-user of the tools, a debugging framework should explain the faults as localizations
and debugging suggestions at the level of the input data rather than explaining failing rules in
the Datalog program implementing the analysis. A natural candidate for such an approach
is delta debugging [89, 90], a debugging framework for generalizing and simplifying a failing
test case. It has recently been shown to scale well when integrated with state-of-the-art Datalog
synthesizers [6] to obtain better synthesis constraints. Delta debugging uses a divide-and-conquer
approach to localize the faults when changes are made to a program, thus providing a concise
witness for the fault. However, the standard delta debugging approach is a brute-force search
among the space of possible witnesses, while the well-defined mathematical semantics of Datalog
enables much more efficient algorithms.

In this chapter, we introduce a debugging approach for incremental Datalog. We characterize
this approach as model-theoretic debugging because, unlike previous approaches, our strategy
does not explain why a tuple was or was not computed using proofs guided by rules. Instead,
we use the connection between input and output tuples to propose a debugging suggestion to
alter the incremental update such that the output satisfies some intended result. Our approach
comprises a novel incremental provenance technique and two intertwined algorithms that diag-
nose and compute a debugging suggestion for a set of faults, i.e., missing and unwanted tuples.

6.2 Motivating Example 99

The first algorithm performs fault localization, which diagnoses the cause of a set of faults. The
second algorithm finds debugging suggestions which are subsets of the incremental change that
can be removed to prevent the faults from appearing.

Our technique goes beyond delta debugging in that our approach takes advantage of our
succinct incremental provenance information, which encodes a trace of the incremental Datalog
execution. The incremental provenance information allows us to localize causes for any faulty
tuples quickly. For debugging the faults, provenance allows our technique to narrow down the
relevant parts of the execution trace quickly. We use an Integer Linear Program (ILP) [128] to
encode the provenance information to compute the debugging suggestion. Therefore, instead of
performing a global search in the space of the Datalog semantics, the incremental provenance
information computed by the Datalog engine allows our technique to consider only the rele-
vant portions of a particular execution. This results in significant performance improvements,
allowing our approach to scale to real-world program analysis cases.

We have implemented our technique using an extended incremental version of the Soufflé [23,
2] Datalog engine and evaluated its effectiveness on DaCapo [129] Java program benchmarks
analyzed by the Doop [20] static analysis library. Compared to delta debugging, we can localize
and debug faults with a speedup of over 26.9× while providing smaller debugging suggestions in
27% of the benchmarks. To the best of our knowledge, we are the first to offer such a debugging
feature in a Datalog engine, particularly for large workloads within a practical amount of time.

We summarize our contributions as follows:

• We propose a novel incremental provenance mechanism for Datalog engines. Our prove-
nance technique allows for succinct proof trees to be constructed using incremental infor-
mation.

• We propose a novel incremental localization and debugging technique for Datalog that
scales to real-world program analyses. Our new debugging technique is a model-theoretic
approach to explain input/output data faults rather than a proof-theoretic approach.

• We implement our technique in the state-of-the-art Datalog engine Soufflé, including ex-
tending incremental evaluation to also compute provenance.

• We evaluate our technique using the Doop static analysis, analyzing real-world Java pro-
grams.

6.2 Motivating Example

In this section, we use our running example to illustrate the problem of incremental input
debugging. Recall, from Figure 2.2, our running example, which illustrates the use of Datalog
for expressing a pointer analysis. In this scenario, incremental updates may be used to represent
changes to the underlying source program. These incremental updates may cause the pointer
analysis to compute unwanted alias relationships. Note that while the following example uses
program analysis to showcase our incremental debugging approach, these techniques only target
the Datalog portion of an overall program analysis framework. In general, program analysis

100 Chapter 6: Input Debugging with Incremental Provenance

involves a series of abstractions, such that the input tuples for the Datalog program may not
directly reflect the source program. Hence, while our techniques can debug faults appearing in
the Datalog program, translating these results back to the source program is not straightforward.
Of course, our technique can be applied to other Datalog applications, where such issues of
abstraction may not be as prohibitive.

For instance, suppose that as part of an update to the input program in Figure 2.2a, we add
a method to upgrade a user session to an admin session, containing the code

upgradedSession = userSession;

userSession = admin.session;

To update the result of the points-to analysis, we can perform an incremental update, where
new tuples assign(upgradedSession,userSession) and load(userSession,admin,session)

are inserted. After computing the incremental update, the new tuple alias(userSession,sec)

is now contained in the output. However, we may wish to maintain an invariant that userSession
should not be able to alias with the secure session sec. Therefore, the incremental update has
introduced a fault into our program, and we wish to debug the appearance of the fault.

A fault localization is a subset of the incremental update such that the fault can be re-
produced, and a debugging suggestion is a subset of the update such that the fault no longer
appears when the debugging suggestion is excluded from the update. In this particular situation,
the fault localization and debugging suggestion are identical, containing only the insertion of
load(userSession,admin,session). Notably, the other tuple in the update, the insertion of
assign(upgradedSession,userSession), is irrelevant for reproducing or fixing the fault and
thus should not be included in an incremental debugging result. In general, however, an incre-
mental update may contain hundreds or thousands of inserted and deleted tuples, and a set of
faults may contain multiple tuples that are changed due to the incremental update. Moreover,
the fault tuples may each have multiple alternative derivations, meaning that localization and
debugging suggestions are not necessarily the same subset of the incremental change. In these
situations, automatically localizing and debugging the faults to find a small relevant subset of
the incremental update may be essential to provide a concise explanation of the faults to the
user.

The scenario presented above is common during software development, where making changes
to a program causes faults to appear. While our example concerns a points-to analysis computed
for a source program, our incremental debugging techniques are in principle applicable for any
Datalog program. Furthermore, they can even be applied to debug the Datalog program itself,
where the update can be a set of Datalog rules that are inserted or deleted.

6.2.1 Delta Debugging

Delta debugging [89] is a general technique that finds a small subset out of a set of changes
to any system, such that a bug can be reproduced in the small subset. It has been applied in
many different areas and for numerous languages, such as diagnosing an HTML page causing
a Mozilla browser to crash, investigating a GCC optimization causing a crash, and many other
applications [90].

6.3 Incremental Provenance 101

The basic delta debugging algorithm is presented in Section 3.3.1. While Algorithm 3 is
presented in the context of strings (e.g., a program can be represented as a string), the basic
concept can be easily adapted for an incremental Datalog update. For example, instead of
considering a string of characters, the algorithm could process the set of insertions and deletions
made during an incremental update.

In the context of an incremental Datalog evaluation, consider running the delta debugging
algorithm where a fault tuple t appears after an incremental update ∆E. The result is a small
subset δE ⊆ ∆E such that the fault tuple t is produced as a result of δE. This subset is
1-minimal, i.e., if any one tuple was removed from δE, then the fault would no longer be
reproduced. The main weakness of the delta debugging algorithm is that it views the Datalog
engine as a black box. The algorithm specifies an EDB set in each iteration and evaluates
the Datalog program to check if the fault tuple is contained in the resulting output. However,
this process may take numerous iterations for large Datalog programs and updates, becoming
prohibitive for debugging.

For instance, consider our running example. The full diff ∆E is comprised of two tu-
ples assign(upgradedSession,userSession) and load(userSession,admin,session). For
the delta debugging algorithm, this diff is partitioned into two subsets, each containing one
tuple. The algorithm then checks if each partition is buggy by evaluating the Datalog pro-
gram with the added tuple to check if alias(userSession,sec) is produced. In this case,
load(userSession,admin,session) indeed forms a buggy update, and so it is assigned to be
∆E. Since ∆E now contains only one tuple, the algorithm ends, and the resulting partition
load(userSession,admin,session) is returned as the result. While this example is small and
only requires one iteration, in general, delta debugging requires many iterations of executing the
Datalog program, which can become very expensive.

6.3 Incremental Provenance

Recall, from Chapter 4, that provenance provides a mechanism to produce proof trees for tuples
computed by the Datalog program. For example, the tuple vpt(userSession,L3) could be
explained in our running example by the following proof tree:

assign(userSession,ins)
new(ins,L3) r1
vpt(ins,L3)

r2
vpt(userSession,L3)

Such a proof tree shows how the tuple is derived from the inputs using the rules in the
program, and thus the programmer may explore the proof tree of an erroneous tuple to find the
root cause of the fault. However, exploring the proof tree in this way requires deep knowledge
of the Datalog program itself. Thus, provenance on its own is an excellent utility for the tool
developer but is unsuitable for an end-user who is unfamiliar with the Datalog rules.

To allow for incremental input debugging of faults that appear after an incremental update,
we extend provenance to explain the appearance of new tuples after the update. Thus, incremen-
tal provenance provides a mechanism to explain how a new tuple is computed from the deletions

102 Chapter 6: Input Debugging with Incremental Provenance

and insertions in an incremental update. Incremental provenance provides these explanations
by restricting the computed proof trees to only the portions affected by (i.e., containing tuples
inserted or deleted as a result of) the incremental update. For example, Figure 6.2 shows an
incremental proof tree for the inserted tuple alias(userSession,sec). The tuples labeled with
(+) indicate tuples that were inserted by an incremental update. Incremental provenance would
only compute provenance information for these newly inserted tuples and would not explore the
tuples in red color already established in a previous epoch.

load(u,a,s) (+) store(a,s,s)
new(a,L1)
vpt(a,L1)

new(a,L1)
vpt(a,L1)

new(s,L2)
vpt(s,L2)

vpt(userSession,L2) (+)
new(sec,L2)
vpt(sec,L2)

alias(userSession,sec) (+)

Figure 6.2: The proof tree for alias(userSession,sec). The top two rows have shortened
variable names. (+) denotes tuples that are inserted as a result of the incremental update, and
red denotes tuples that were not affected by the incremental update.

While incremental provenance, as described above, computes subtrees of full proof trees,
incremental debugging deals with incremental provenance as sets of tuples. Therefore, to for-
malize incremental provenance, we define inc-prov as follows. Given an incremental update ∆E,
inc-prov(t,∆E) should consist of tuples that were updated due to the incremental update.

Definition 6.3.1. The set inc-prov(t,∆E) is the set of tuples that appear in a proof tree for t,
that are also inserted as a result of ∆E.

Provenance with Incremental Annotations. Recall, from Chapter 4, that provenance
information is computed using provenance annotations. The important annotation is that each
tuple is associated with the height of its minimal height proof tree. Meanwhile, recall, from
Chapter 5, that standard incremental evaluation strategies use incremental annotations; for
example, each tuple is associated with an iteration number and a count for the number of
derivations in that iteration.

To compute provenance information in an incremental evaluation setting, we observe a corre-
spondence between the incremental annotations and provenance annotations. For the iteration
number in incremental evaluation, a tuple is produced in some iteration i if at least one of the
body tuples was produced in the previous iteration i− 1. Therefore, the iteration number I for
a tuple produced in a fixpoint is equivalent to

I(t) = max{I(t1), . . . , I(tk)}+ 1 if t :− t1, . . . , tk

This definition of iteration number corresponds closely to the height annotation in provenance,
with the only difference being that the iteration number is reset to zero in each stratum, while
the height annotation is preserved across strata. Therefore, the iteration number annotation is
suitable for constructing the same constraints that guide the proof tree construction. The rule

6.4 Incremental Input Debugging 103

number annotation can be excluded if we extend the provenance query mechanism to search for
all rules for a relation instead of the single rule given by the rule number.

For incremental debugging, it is important that the Datalog engine can produce provenance
information relevant for faults that appear after an incremental update. Therefore, the prove-
nance information produced by the Datalog engine should be restricted to tuples inserted or
deleted by the incremental update. To achieve this, we adapt the user-driven proof tree explo-
ration process presented in Chapter 4 to an automated procedure. This automated procedure
only explores portions of the proof tree where the tuples are inserted or deleted due to the
incremental update.

Recall from Chapter 4 that the proof tree construction is performed as a series of goal
searches, which construct the proof tree level by level. For example, to discover the bottom level
of the proof tree in Figure 6.2, we have the goal search following rule r4:

? :−vpt(Var1,Obj), vpt(Var2,Obj), Var1 ̸= Var2,

Var1 = userSession, Var2 = sec

The result of this goal search contains the tuples vpt(userSession,L2) and vpt(sec,L2).
For standard provenance, each of these tuples would create a corresponding goal search, thus
constructing the next level of the proof tree. However, for incremental provenance, we restrict
the next goal search to only compute provenance for tuples that are inserted by the incremental
update. For this, we compute the intersection of the result with ∆IDB, the changes that resulted
from the incremental update. Then, only tuples that exist in this intersection are considered in
the next iteration of provenance construction.

As a result, our approach for incremental provenance produces proof trees containing only
tuples that were inserted or deleted due to an update. For incremental debugging, this property
is crucial for minimizing the search space. Note also that provenance also handles stratified
negation by asserting that a negation holds true if the program does not compute the corre-
sponding tuple. Therefore, an asserted negation can be treated as an input fact since negations
are not further explained in the provenance framework.

6.4 Incremental Input Debugging

This section describes our approach and algorithms for the incremental fault localization and
debugging problems. We begin by formalizing the problem and then presenting basic versions
of both problems. Finally, we extend the algorithms to handle missing faults, negations, and
user interaction.

To formalize incremental input debugging, we first define a fault. For a Datalog program,
a fault may manifest in one of two situations: (1) an undesirable tuple that appears, or (2)
a desirable tuple that disappears. In other words, a fault is a tuple that does not match the
intended semantics of a program.

Definition 6.4.1 (Intended Semantics). The intended semantics of a Datalog program P is a
pair of sets (I+, I−). We call I+ a desirable tuple set and I− an undesirable tuple set. An input

104 Chapter 6: Input Debugging with Incremental Provenance

set E is correct w.r.t P and (I+, I−) if all desirable tuples are produced, i.e., I+ ⊆ P (E) and no
undesirable tuples are produced, i.e., I− ∩ P (E) = ∅.

Given an intended semantics for a program, a fault can be defined as follows:

Definition 6.4.2 (Fault). Let P be a Datalog program, with input set E and intended semantics
(I+, I−). Assume that E is incorrect w.r.t P with (I+, I−). Then, a fault of E is a tuple t such
that either t is desirable but missing, i.e., t ∈ I+ \ P (E) or t is undesirable but produced, i.e.,
t ∈ P (E) ∩ I−.

Now, we can formalize the situation where an incremental update for a Datalog program
introduces a fault. Let P be a Datalog program with intended semantics I✓ = (I+, I−) and let
E1 be an input EDB. Then, let ∆E1→2 be an incremental update, such that E1⊎∆E1→2 results
in another input EDB, E2. Then, assume that E1 is correct w.r.t I✓, but E2 is incorrect.

Fault Localization. The fault localization problem allows the user to pinpoint the sources of
faults. This is achieved by providing a minimal subset of the incremental update that can still
reproduce the fault. Formally,

Definition 6.4.3 (Fault Localization). A fault localization is a subset δE ⊆ ∆E1→2 such that
P (E1 ⊎ δE) exhibits all faults of E2.

Debugging Suggestion. A debugging suggestion provides a suggested ‘fix’ for a set of faults.
The goal is to provide a debugging suggestion, which is a subset of the diff, where removing that
subset would prevent all faults from appearing. Formally,

Definition 6.4.4 (Debugging Suggestion). A debugging suggestion is a minimal subset δE× ⊆
∆E1→2 such that P (E1 ⊎ (∆E1→2 \ δE×)) does not produce any faults of E2.

Following the above definitions, the fault localization problem is to find a fault localization
automatically, and similarly, the incremental debugging problem is to find a debugging suggestion
automatically. Ideally, the fault localization or debugging suggestion that is found should be of
minimal size to provide the most succinct explanation to the user. However, in practice, even
non-optimal solutions can provide utility for the user, as shown in Section 6.5.

6.4.1 System Overview

The algorithms computing fault localizations and debugging suggestions depend on an incremen-
tal evaluation for Datalog, with an engine that produces incremental provenance information.
The incremental debugging algorithms are computed after an incremental evaluation has already
happened, and the algorithms use the diff information produced by the incremental evaluation
along with the provenance.

Figure 6.3 shows a flow chart of how the system is used. The first portion of the system
is the incremental Datalog evaluation. Here, the incremental evaluation takes an EDB and an
incremental update containing tuples inserted or deleted from the EDB, denoted ∆EDB. The

6.4 Incremental Input Debugging 105

EDB

∆EDB

Incremental
Evaluation

IDB

∆IDB

Incremental
Provenance

Fault Localiza-
tion/Debug Faults

Debug
Suggestion

User
Feedback

Pre-processing Incremental Datalog evaluation Fault Localization/Debug

Figure 6.3: Incremental Debugging System

result of the incremental evaluation is the output IDB, along with the set of IDB tuples inserted
or deleted as a result of the incremental update, denoted ∆IDB. The incremental evaluation
also provides a provenance utility, which produces a proof tree for some given query tuple.

The second portion of the system is the fault localization/debugging. This process takes
a set of faults provided by the user. This set of faults is a subset of ∆IDB, where each tuple
is either unwanted and inserted in ∆IDB or is desirable but deleted in ∆IDB. Then, the fault
localization/debugging algorithms use the full ∆IDB and ∆EDB and querying for provenance
to produce a localization or debugging suggestion. The user can provide feedback in the form
of rejecting a subset of the localization or debugging suggestion, in which case the system will
incrementally reverse the rejected tuples to find a different result.

The main fault localization and debugging algorithms work together to provide localization
or debugging suggestions to the user. The main idea of these algorithms is to compute proof trees
for fault tuples, using the provenance utility provided by the incremental Datalog engine. These
proof trees directly provide a localization for the faults. Then, to find debugging suggestions, the
algorithms create an Integer Linear Programming (ILP) instance that encode the proof trees,
with the goal of disabling all proof trees to prevent the fault tuples from appearing.

6.4.2 Fault Localization

In the context of incremental Datalog, the fault localization problem provides a small subset
of the incremental changes that allow the fault to be reproduced. Consider the example in
Figure 6.4. This diagram illustrates that a fault localization is a subset of the input changes
L ⊆ ∆E such that when L is used as the input changes in the incremental evaluation, the
resulting update still produces the faults.

We begin by first considering a basic version of the fault localization problem. In this basic
version, we have a positive Datalog program (i.e., with no negation), and we localize a set of
faults that are undesirable but appear (i.e., P (E)∩ I−). The main idea of the fault localization
algorithm is to compute a proof tree for each fault tuple. The tuples forming these proof trees
are sufficient to localize the faults since the presence of these tuples allows the proof trees to be
valid and thus the fault tuples to be reproduced.

106 Chapter 6: Input Debugging with Incremental Provenance

∆P∆E

Input Changes
+
−
+
+
−
+
−
+
−

localization

∆I

Unchanged Tuples

Inserted

Deleted
✗

✗

Figure 6.4: A fault localization is a subset of input changes such that the faults are still repro-
duced

Algorithm 9 Localize-Faults(P , E2, ∆E1→2, F): Given a diff ∆E1→2 and a set of fault tuples
F , returns a subset δE ⊆ ∆E1→2 such that E1 ⊎ δE produces all t ∈ F
1: for tuple t ∈ F do
2: Let inc-prov(t,∆E1→2) be an incremental proof tree of t w.r.t P and E2, containing

tuples that were inserted due to ∆E1→2

3: end for
4: return ∪t∈F (inc-prov(t,∆E1→2) ∩∆E1→2)

The basic fault localization is presented in Algorithm 9. For each fault tuple t ∈ F , the
algorithm computes one incremental proof tree inc-prov(t,∆E1→2). These proof trees contain
the set of tuples that were inserted due to the incremental update ∆E1→2 that cause the existence
of each fault tuple t. Therefore, by returning the union ∪t∈F (inc-prov(t,∆E1→2)∩∆E1→2), the
algorithm produces a subset of ∆E1→2 that reproduces the faults.

6.4.3 Input Debugging Suggestion

An input debugging suggestion is a subset of the input changes such that the remaining changes
‘fix’ the faults. Consider Figure 6.5, which shows that a debug suggestion is a subset of the
input changes, such that the remainder of the changes, when used as the incremental update,
no longer produce the faults.

∆P

Input Changes
+
−
+
+
−
+
−
+
−

debug suggestion

∆I

Unchanged Tuples

Inserted

Deleted
✗

✗

Figure 6.5: An input debugging suggestion is a subset of input changes such that the remainder
of the input changes no longer produce the faults

As with fault localization, we begin with a basic version of the incremental debugging prob-
lem, where we have only a positive Datalog program and debug a set of unwanted fault tuples.
The basic debugging suggestion algorithm involves computing all non-cyclic proof trees for each
fault tuple and ‘disabling’ each of those proof trees as shown in Algorithm 10. If all proof trees

6.4 Incremental Input Debugging 107

are invalid, then the fault tuple will no longer be computed by the resulting EDB.

Algorithm 10 Debug-Suggestion(P , E2, ∆E1→2, F): Given a diff ∆E1→2 and a set of fault
tuples F , return a subset δE ⊆ ∆E1→2 such that E1 ⊎ (∆E1→2 \ δE) does not produce tr
1: Let all-inc-prov(t,∆E1→2) = {T1, . . . , Tn} be the total incremental provenance for a tuple t

w.r.t P and E2, where each Ti is a non-cyclic proof tree containing tuples inserted due to
∆E1→2.
Construct an integer linear program instance as follows:

2: Create a 0/1 integer variable xtk for each tuple tk that occurs in the proof trees in
all-inc-prov(t,∆E1→2) for each fault tuple t ∈ F

3: for each tuple tf ∈ F do
4: for each proof tree Ti ∈ all-inc-prov(t,∆E1→2) do
5: for each line th ← t1 ∧ . . . ∧ tk in Ti do
6: Add a constraint xt1 + . . .+ xtk − xth ≤ k − 1

7: end for
8: end for
9: Add a constraint xtf = 0

10: end for
11: Add the objective function maximize

∑
te∈EDB xte

12: Solve the ILP
13: Return {t ∈ ∆E1→2 | xt = 0}

Algorithm 10 computes a minimum subset of the diff ∆E1→2, which would prevent the
production of each t ∈ F when excluded from the diff. The key idea is to use integer linear
programming (ILP) [128] as a vehicle to model the proof trees so that the solution of the ILP
represents a debugging suggestion. We phrase the proof trees as a pseudo-Boolean formula [130]
whose propositions represent tuples in the EDB and IDB. In the ILP, the faulty tuples are
constrained to be false (i.e., have a value of zero), and the EDB tuples assuming true values are
to be maximized, i.e., we wish to maximize the number of EDB tuples kept unchanged while
producing a correct debugging suggestion.

The ILP created in Algorithm 10 introduces a variable for each tuple (either IDB or EDB)
that appears in any of the incremental proof tree for the fault tuples. For the ILP model, we
have three types of constraints: (1) to encode a single-step proof, (2) to enforce the false value
for fault tuples, and (3) to ensure that variables are in the 0-1 domain.

The constraints for encoding proof trees are introduced for each one-step derivation:

t1 . . . tk
th

that can be expressed as a Boolean constraint t1∧ . . .∧ tk =⇒ th for the rule application where
t1, . . . , tk and th are Boolean variables. Converting the Boolean constraints to disjunctive normal
form, we obtain: t1 ∨ . . . ∨ tk ∨ th by applying the definition of implication and De Morgan’s
laws. The implication is transformed to a pseudo (linear) Boolean formula:

φ
(
t1 ∨ . . . ∨ tk ∨ th

)
≡ (1− xt1) + . . .+ (1− xtk) + th > 0

108 Chapter 6: Input Debugging with Incremental Provenance

where φ maps a Boolean function to the 0− 1 domain and xt corresponds to the 0-1 variable of
proposition t in the ILP. The pseudo-Boolean constraint can be further simplified to xt1 + . . .+

xtk − xth ≤ k − 1.
The constraints assuming false values for fault tuples tf ∈ F are simple equalities, i.e.,

xtf = 0. The objective function for the ILP is to maximize the number of inserted tuples that
are kept, which is equivalent to minimizing the number of tuples in ∆E1→2 that are disabled by
the debugging suggestion. In ILP form, this is expressed as maximizing

∑
t∈∆E1→2

xt.

max.
∑

t∈∆E1→2
xt

s.t. xt1 + . . . xtk − xth ≤ k − 1 (∀th ⇐ t1 ∧ . . . ∧ tk ∈ Ti)
xtf = 0 (∀tf ∈ F)
xt ∈ {0, 1} (∀tuples t)

The solution of the ILP permits us to determine the EDB tuples for debugging:

δE = {t ∈ ∆E1→2 | xt = 0}

This is a minimal set of inserted tuples that must be removed from ∆E1→2 so that the fault
tuples disappear.

This ILP formulation encodes the problem of disabling all proof trees for all fault tuples
while maximizing the number of inserted tuples kept in the result. If there are multiple fault
tuples, the algorithm simply computes proof trees for each fault tuple and combines all proof
trees in the ILP encoding. The result of the algorithm is a set of tuples that is minimal but
sufficient to disable the fault tuples from being produced.

6.4.4 Extensions

Missing Tuples. The basic versions of the fault localization and debugging problems only
handle a tuple which is undesirable but appears. The opposite kind of fault, i.e., a tuple which
is desirable but missing, can be debugged by considering a dual version of the problem.

For the dual version of the problem, we first observe that a tuple t that disappears after
applying a diff ∆E1→2 would appear if we consider the update in the opposite direction, ∆E2→1.
Then, the dual problem of localizing the disappearance of t is to find a debugging suggestion for
the appearance of t after applying the opposite diff, ∆E2→1.

To localize a disappearing tuple t, we want to provide a small subset δE of ∆E1→2 such that
t is still not computable after applying δE to E1. To achieve this, all ways to derive t must
be invalid after applying δE. Considering the dual problem, debugging the appearance of t in
∆E2→1 results in a subset δE such that E2 ⊎ (∆E2→1 \ δE) does not produce t. Now, consider
the reverse of δE (i.e., insertions become deletions and vice versa), which we denote δE−1. If we
apply δE−1 to E1, then E1 ⊎ δE−1 = E2 ⊎ (∆E2→1 \ δE), since E1 = E2 ⊎∆E2→1. Therefore,
δE−1 is the desired minimal subset that localizes the disappearance of t.

Similarly, to debug a disappearing tuple t, we apply the dual problem of localizing the
appearance of t after applying the opposite diff ∆E1→2. Here, the debugging suggestion of a

6.4 Incremental Input Debugging 109

disappearing tuple is to introduce one way of deriving t. Therefore, localizing the appearance
of t in the opposite diff provides one derivation for t, and thus is the desired solution.

In summary, to localize or debug a tuple t that is missing after applying ∆E1→2, we compute
a solution for the dual problem. The dual problem for localization is to debug the appearance
of t after applying ∆E2→1, and the dual problem for debugging is to localize the appearance of
t in ∆E2→1.

Stratified Negation. Consider the problem of localizing the appearance of an unwanted tuple
t. If the Datalog program contains stratified negation, then the appearance of t can be caused
by two possible situations. Either (1) there is a positive tuple in the proof tree of t that appears,
or (2) there is a negated tuple in the proof tree of t that disappears. The first case is the
standard case, but in the second case, if a negated tuple disappears, then its disappearance
can be localized or debugged by computing the dual problem as in the missing tuple strategy
presented above.

In executing the dual version of the problem, we may encounter further negated tuples. For
example, consider the set of Datalog rules:

A(x) :- B(x), !C(x).

C(x) :- D(x), !E(x).

If we wish to localize an appearing but unwanted tuple A(x), we may encounter a disappearing
tuple C(x). Then, executing the dual problem, we may encounter an appearing tuple E(x).

In general, we can continue flipping between the dual problems to solve the localization
or debugging problem. This process is guaranteed to terminate due to the stratification of
negations. Each time the algorithm encounters a negated tuple, it must appear in an earlier
stratum than the previous negation. Therefore, eventually, the negations reach the input EDB,
and the process terminates.

User Interaction. An automatically produced fault localization or debugging suggestion may
not be the user’s intended result. For example, a localization may include an EDB tuple that
the user decides is actually correct and should not be considered to be causing the fault. On the
other hand, a debugging suggestion may include a tuple that the user does not wish to include.
Therefore, our algorithms should allow the user to apply their domain knowledge during the
debugging process.

The main idea for this user interaction hinges on the incremental evaluation in the Datalog
engine. The user should be able to specify that some tuples in the localization or debugging
suggestion should be excluded from the result. These specified tuples are incrementally reversed
(a tuple that was originally inserted in the diff ∆E1→2 should be removed and vice versa),
then the fault localization or debugging suggestion is computed again. The result will then not
include the user-specified tuples.

Changes in Datalog Rules. The algorithms are presented above in the context of localizing
or debugging a change to the input tuples. However, with a simple transformation, the same

110 Chapter 6: Input Debugging with Incremental Provenance

algorithms can also be applied to changes in Datalog rules. For each Datalog rule, introduce
a predicate Rule(i), where i is a unique number per rule. Then, the unary relation Rule can
be considered input, and thus the set of rules can be changed by providing a diff containing
insertions or deletions into the Rule relation. For example, a transformed set of rules may be:

P(x, y) :- E(x, y), Rule(1).

P(x, z) :- E(x, y), P(y, z), Rule(2).

Then, by including or excluding 1 or 2 in the EDB relation Rule, the underlying Datalog rules
can be ‘switched on or off,’ and a change to the Datalog program can be expressed as a diff in
the Rule relation.

6.4.5 Full Algorithm

The full incremental debugging algorithm presented in Algorithm 11 incorporates the basic
version of the problem, along with all of the extensions presented above. The algorithm begins
by initializing the EDB after applying the diff (line 1) and separate sets of unwanted faults
(lines 2) and missing faults (3). The set of candidate tuples forming the debugging suggestion
is initialized to be empty (line 4).

The main part of the algorithm is a worklist loop (lines 5 to 15). In this loop, the algorithm
first processes all unwanted but appearing faults (F+, line 6), by computing a debugging sugges-
tion for F+. The result is a subset of tuples in the diff such that the faults F+ no longer appear
when the subset is excluded from the diff. In the provenance system, negations are treated as
EDB tuples, and thus the resulting debugging suggestion may contain negated tuples. These
negated tuples are added to F− (line 7) since a tuple appearing in F+ may be caused by a
negated tuple disappearing. The algorithm then debugs the tuples in F− by computing the dual
problem, i.e., localizing F− with respect to ∆E2→1. Again, this process may result in negated
tuples, which are added to F+, and the loop begins again. This worklist loop must terminate,
due to the semantics of stratified negation, as discussed above.

At the end of the worklist loop, L contains a candidate debugging suggestion. However,
the user may choose to reject some of these tuples, and the algorithm should find a different
debugging candidate. The user can provide a subset U ⊆ L (line 18). Then, the algorithm is
rerun, excluding U from the original diff.

While Algorithm 11 presents a full algorithm for computing a debugging suggestion, the fault
localization problem can be solved in a similar way. Since debugging and fault localization are
dual problems, the full fault localization algorithm simply switches Debug-Suggestion in line 6
and Localize-Faults in line 11.

Example. We demonstrate how these algorithms work through our running example. Recall
the incremental update which inserts two tuples assign(upgradedSession,userSession) and
load(userSession,admin,session). As a result, the system computes the unwanted fault tuple
alias(userSession,sec). To localize or debug the appearance of the fault tuple, the algorithms
start by computing its provenance, as shown in Figure 6.2. For localization, the algorithm

6.4 Incremental Input Debugging 111

Algorithm 11 Incremental-Debugging(P , E1, ∆E1→2, (I+, I−)): Given a diff ∆E1→2 and an
intended semantics (I+, I,), compute a subset δE ⊆ ∆E1→2 such that ∆E1→2 \ δE satisfies the
intended semantics
1: Let E2 be the EDB after applying the diff: E1 ⊎∆E1→2

2: Let F+ be appearing unwanted faults: {I− ∩ P (E2)}
3: Let F− be missing desirable faults: {I+ \ P (E2)}
4: Let L be the set of tuples forming a debugging suggestion, initialized to ∅
5: while both F+ and F− are non-empty do
6: Add Debug-Suggestion(P , E2, ∆E1→2, F+) to L
7: for negated tuples !t ∈ L do
8: Add t to F−

9: end for
10: Clear F+

11: Add Localize-Faults(P , E1, ∆E2→1, F−) to L
12: for negated tuples !t ∈ L do
13: Add t to F+

14: end for
15: Clear F−

16: end while
17: if user rejects some tuples then
18: Let U be set of user-rejected tuples
19: return Full-Fault-Localization(P , E1, ∆E1→2 \ U , (I+, I−))
20: end if
21: return L

returns the updated EDB tuple in the proof tree, i.e., load(userSession,admin,session). For
debugging, the algorithm creates a set of ILP constraints, where each tuple (with shortened
variables) represents an ILP variable:

load(u, a, s)− vpt(u, L2) ≤ 0

vpt(u, L2)− alias(u, s) ≤ 0

alias(u, s) = 0

max
∑

load(u, a, s)

For this simple ILP, the result is identical to the localization solution, which is that the tuple
load(userSession,admin,session) should be excluded to fix the fault.

6.4.6 Correctness and Optimality

In this section, we discuss the correctness and optimality of our algorithms. Here, correctness
means that the subset of the diff produced by localization correctly reproduces the faults, and a

112 Chapter 6: Input Debugging with Incremental Provenance

debugging suggestion correctly prevents the faults from appearing. Optimality can be measured
by the size of the subset given by the localization or debugging suggestion, where an optimal
solution means that no smaller subset of the localization or debugging suggestion is a correct
result.

Fault Localization. The correctness of fault localization (Algorithm 9) lies in the semantics
of the proof trees. If every EDB tuple of the proof trees exist, then each proof tree would
eventually be fully instantiated, and thus the fault tuples would be produced. The optimality
of fault localization is dependent on the properties of the proof trees produced by the Datalog
engine. If these proof trees are minimal in terms of the number of EDB tuples, then our fault
localization algorithm would also be optimal.

Debugging Suggestion. The correctness and optimality of a debugging suggestion (Algo-
rithm 10) depend directly on the properties of the ILP encoding. Since debugging must use all
proof trees for fault tuples, the properties of each individual proof tree do not affect optimality.
For debugging, the ILP constraints encode the implications in the proof trees and the property
that we disable the fault tuples, and therefore the result is correct. The optimality of a debug-
ging suggestion is a direct consequence of the optimization target in the ILP instance, and since
the ILP minimizes the number of tuples included in the result, the solution is optimal.

Full Algorithm. Each component of the full algorithm is correct, as discussed above, and
therefore it only remains to be shown that considering the dual problem for negations is correct.
This correctness is discussed in Section 6.4.4, and thus the full algorithm identifies a correct
debugging suggestion.

However, the full algorithm is not necessarily optimal in the presence of negation. For
example, consider when an initial debugging suggestion includes a negated tuple, t. Then, the
full algorithm computes the dual problem of localizing the appearance of t with the opposite diff
∆E2→1. However, this opposite diff does not consider the initial debugging suggestion (only the
negated tuple), and thus, the result may not be optimal. In practice, this sub-optimality rarely
affects the solution, and the result is generally optimal or close to optimal.

6.5 Experiments

This section evaluates our technique on real-world benchmarks to determine its effectiveness and
applicability. We aim to address the following three research questions:

• RQ1: Is the new technique faster than a delta-debugging strategy?

• RQ2: Does the new technique produce more precise localization/debugging candidates
than delta debugging?

• RQ3: Does the new technique scale effectively to real-world use cases?

6.5 Experiments 113

Table 6.1: Results for debugging size and runtime, our fault localization/debugging technique
compared to delta debugging

Debugging Suggestion Runtimes Delta Debugging
Benchmark No. Size Overall (s) Localize (s) Debugging (s) Size Runtime (s) Speedup (×)
antlr 1 2 73.6 0.51 73.1 3 3057.8 41.5

2 1 79.4 0.00 79.4 1 596.5 7.5
3 1 0.95 0.95 - 1 530.8 558.7
4 2 77.8 1.89 75.9 3 3017.6 38.8

bloat 1 2 3309.5 0.02 3294.1 2 2858.6 0.9
2 1 356.3 0.00 355.4 1 513.6 1.4
3 1 0.33 0.33 - 1 557.7 1690.0
4 3 3870.6 0.10 3854.7 2 2808.3 0.7

chart 1 1 192.6 0.00 192.6 1 685.0 3.6
2 1 3.01 3.01 - 1 675.3 224.4
3 1 78.8 0.00 78.8 1 667.6 8.5
4 2 79.9 3.24 76.7 3 3001.1 37.6

eclipse 1 2 177.3 0.04 177.2 3 2591.2 14.6
2 1 79.2 0.00 79.1 1 416.1 5.3
3 1 0.12 0.12 - 1 506.3 4219.2
4 3 91.9 0.09 91.8 3 2424.4 26.4

fop 1 2 83.8 0.05 83.8 2 3446.6 41.1
2 1 76.9 0.00 76.9 1 670.7 8.7
3 1 0.66 0.66 - 1 721.8 1093.6
4 6 74.8 0.50 74.3 Timeout (7200) 96.3+

hsqldb 1 2 83.3 0.04 83.3 2 2979.2 35.8
2 1 79.4 0.00 79.4 1 433.8 5.5
3 1 74.0 0.00 74.0 1 663.1 9.0
4 3 75.5 0.04 75.5 5 6134.8 81.3

jython 1 1 83.3 0.00 83.3 1 609.4 7.3
2 1 78.2 0.00 78.2 1 590.4 7.5
3 1 76.6 0.00 76.6 1 596.2 7.8
4 1 75.8 0.00 75.8 1 587.6 7.8

luindex 1 2 81.3 0.07 81.2 3 2392.1 29.4
2 1 79.8 0.00 79.8 1 511.0 6.4
3 1 0.10 0.10 - 1 464.8 4648.0
4 4 77.9 0.12 77.8 5 4570.4 58.7

lusearch 1 2 110.2 0.06 110.0 3 2558.8 23.2
2 1 1062.1 0.00 1057.4 1 370.4 0.3
3 1 0.12 0.12 - 1 369.6 3080.0
4 2 294.2 0.06 293.2 3 2420.9 8.2

pmd 1 2 78.1 0.02 78.1 3 3069.8 39.3
2 1 77.0 0.00 77.0 1 600.2 7.8
3 1 0.08 0.08 - 1 717.8 8972.5
4 3 74.3 0.08 74.2 3 2828.3 38.1

xalan 1 1 84.9 0.00 84.9 1 745.3 8.8
2 1 82.2 0.00 82.2 1 728.9 8.9
3 1 100.1 0.00 100.1 1 1243.7 12.4
4 1 521.6 0.00 518.3 1 712.5 1.4

114 Chapter 6: Input Debugging with Incremental Provenance

6.5.1 Experimental Setup

We implemented the incremental fault localization and debugging algorithms using Python.
The Python code calls out to an incremental version of the Soufflé Datalog engine [2] extended
with incremental provenance. Our implementation of incremental provenance uses the default
metric of minimizing proof tree height, as it provides near-optimal solutions with slight runtime
improvements. For solving integer linear programs, we use the GLPK library.

Our main point of comparison in our experimental evaluation is the delta debugging ap-
proach, such as that used in the ProSynth Datalog synthesis framework [6]. We adapted the
implementation of delta debugging used in ProSynth to support input tuple updates. Like our
fault debugging implementation, the delta debugging algorithm was implemented in Python;
however, it calls out to the standard Soufflé engine since that provides a lower overhead than
the incremental or provenance versions.

All of our experiments were run on a server with an Intel Xeon Gold 6130 CPU and 192
GB of memory. The Soufflé executables are compiled with GCC 10.3.1, and the fault localiza-
tion/debugging and delta debugging implementations are executed with Python 3.8.10.

Use Case. For our benchmarks, we use the Doop program analysis framework [20] with the
DaCapo set of Java benchmarks [131]. The analysis contains approx. 300 relations, 850 rules,
and generates approx. 25 million tuples from an input size of 4-9 million tuples per DaCapo
benchmark. For each of the DaCapo benchmarks, we selected an incremental update randomly
containing 50 tuples to insert and 50 tuples to delete, which is representative of a typical commit.
From the resulting IDB changes, we selected four different fault sets for each benchmark, each
containing between 3 and 10 updated outputs, which represents an analysis error. Then, we
debug each error with both our technique and the delta debugging technique. We consider two
aspects of the debugging procedure for each benchmark: (1) the execution time required to
compute a debugging suggestion, and (2) the precision of the debugging suggestion measured
by the number of tuples. For delta debugging, we exclude the time for reading the result from
Soufflé’s output files.

6.5.2 Performance

The results of our experiments are shown in Table 6.1. Our incremental debugging technique ex-
hibits much better performance overall compared to the delta debugging technique. We observe
a geometric mean speedup of over 26.9× 1 compared to delta debugging. For delta debugging,
the main cause of performance slowdown is that it is a black-box search technique, and it re-
quires multiple iterations of invoking Soufflé (between 6 and 19 invocations for the presented
benchmarks) to direct the search. Since each invocation of Soufflé takes between 30-50 seconds,
depending on the benchmark and EDB, the overall runtime for delta debugging is in the hun-
dreds of seconds at a minimum. Indeed, we observe that delta debugging takes between 370 and
6135 seconds on our benchmarks, with one instance timing out after two hours (7200 seconds).

1We say “over” because we bound timeouts to 7200 seconds.

6.6 Chapter Summary 115

On the other hand, our incremental debugging technique simply calls for provenance infor-
mation from an already initialized instance of incremental Soufflé. For eight of the benchmarks,
the faults only contained missing tuples. Therefore, only the Localize-Faults method was called,
which only computes one proof tree for each fault tuple and does not require any ILP solving.
The remainder of the benchmarks called the Debug-Suggestion method, and the main bottle-
neck there is to construct and solve the ILP instance. For three of the benchmarks, bloat-1,
bloat-4, and lusearch-2, the runtime was slower than delta debugging. This result is due to
the fault tuples in these benchmarks having many different proof trees, which took longer to
compute and led to a larger ILP instance, which took longer to solve.

6.5.3 Quality

While the delta debugging technique produces 1-minimal results, we observe that despite no
overall optimality guarantees, our approach could produce more minimal debugging suggestions
in 27% of the benchmarks. Moreover, our technique produced a larger debugging suggestion in
only one of the benchmarks. This difference in quality is due to the choices made during delta
debugging. Since delta debugging has no view of the internals of Datalog execution, it can only
partition the EDB tuples randomly. Then, the choices made by delta debugging may lead to a
locally minimal result that is not globally optimal.

For our fault localization technique, most of the benchmarks computed one iteration of
debugging and did not encounter any negations. Therefore, the results were optimal in these
situations due to the ILP formulation. Despite our technique overall not necessarily being
optimal, it still produces high-quality results in practice.

6.5.4 Overall Scalability

Our technique is able to find all debugging suggestions in 4.6 minutes on average. 86% of bench-
marks can be debugged in under 3 minutes compared 0% using delta debugging. Moreover, 93%
of the benchmarks can be debugged in under 10 minutes compared to 32% with delta debugging.
We encountered only two outlier cases requiring approx. 1 hour, where delta debugging performs
slightly better in those cases. Overall, our technique exhibits a significant improvement com-
pared to delta debugging, allowing users to obtain debugging suggestions much more efficiently
than with delta debugging. Moreover, our debugging suggestions are smaller than the results of
delta debugging, and the user can provide feedback and compute a different result well within
a reasonable timeframe.

6.6 Chapter Summary

This chapter presents a new debugging technique that localizes faults and provides debugging
suggestions for incrementally updated Datalog program inputs. Unlike previous approaches,
our technique does not entirely rely on a black-box solver to perform the debugging, instead
utilizing incremental provenance information obtained from the Datalog computation. Our
technique exhibits speedups of 26.9× compared to delta debugging and finds more minimal

116 Chapter 6: Input Debugging with Incremental Provenance

debugging suggestions 27% of the time. We can debug 93% of the faults in our program analysis
benchmarks in under 10 minutes, providing high-performance debugging for users.

Chapter 7

Conclusion

The Datalog programming language has seen a recent trend towards more widespread adoption,
both in research and industry. This increased popularity has largely been driven by the advent of
new applications, including graph analyses, networking, and program analysis. To support these
new applications, modern engines, such as Soufflé, have allowed for high-performance evaluation
of Datalog programs while maintaining the ease of use resulting from Datalog’s clean declarative
semantics. However, tooling and infrastructure support, which would be of huge benefit for these
modern large-scale applications, is still in its infancy for Datalog and logic programming. This
thesis partly fills the tooling gaps, aiming to improve the productivity of Datalog programmers.
In particular, this thesis focuses on debugging and incremental evaluation.

As presented in Chapter 4, the provenance framework provides a critical tool for Datalog
programmers to discover and debug faults that may occur in Datalog rules. The provenance
framework allows a Datalog program to generate proof trees, which trace the execution from
inputs, through the rules, to the outputs. A programmer can use this provenance utility to
investigate faulty output tuples, to discover potentially faulty rules. While designing this prove-
nance framework, we develop a novel encoding for provenance information in proof annotations.
These proof annotations are used by a subsequent proof construction phase, which allows the
user to query for proof trees for any computed tuple. The result was a practical framework,
with overheads of only 1.31× compared to standard Datalog evaluation.

The second area which we tackle in this thesis is incremental evaluation. For this, we present
our elastic incremental evaluation in Chapter 5. Our elastic incremental evaluation strategy
can out-perform previous state-of-the-art incremental evaluation approaches on workloads that
include both small and large-sized updates. However, we also discover some pitfalls in the
performance of incremental evaluation algorithms in general, where a standard batch-mode
evaluation can exhibit superior performance.

Lastly, we address the opportunity to provide automated debugging solutions in Datalog.
With incremental evaluation algorithms, Datalog programs can exhibit faults that arise be-
tween incremental updates. Furthermore, proof trees as computed by provenance may not be
understandable for users since they require a deep understanding of the Datalog rules. Thus,
Chapter 6 presents our solution, which uses incremental evaluation, provenance, and integer
linear programming to automatically localize faulty input tuples that cause faulty outputs. This

118 Chapter 7: Conclusion

technique can even suggest debugging fixes for these input tuples, such that the faulty outputs
no longer appear.

In combination, the above contributions showcase the vast opportunities in enhancing the us-
ability of logic programming languages. This thesis tackles the important problems of debugging
and incremental evaluation, with the aim of making our solutions practical and usable.

7.1 Future Work

This thesis presents several approaches to address tooling gaps that exist in Datalog. However,
there are many promising avenues for future research in this direction. These future research
topics may include expanding the utility and applicability of our techniques and improving their
performance.

Firstly, there remain several possible improvements for the provenance system. One im-
portant aspect currently lacking in the provenance framework is to support advanced language
features such as aggregation and functors. In principle, these features can be supported; how-
ever, the encoding and semantics of the provenance system would require novel extensions.
Additionally, there is also a body of work implementing subsumption in Datalog [132], allowing
general lattices to be expressed. Provenance can then be implemented under the subsumption
framework, which would allow for more generic provenance annotations. To utilize this, we could
develop a user-facing language in which proof tree queries and patterns can be expressed, aiding
the programmer to find more relevant proof trees.

Secondly, the provenance framework can provide utility beyond debugging. One example is
our use of provenance information to provide automated debugging suggestions, as presented
in Chapter 6. However, even further applications are possible. For example, one important re-
search area in the past few years has been explainability, particularly concerning AI systems [133,
134]. For the Datalog language, provenance provides an ideal candidate for building explanation
systems, where the reasons for specific outputs are made more transparent by their proof trees.
Another research area is in ranking database or computation outputs based on quality or rele-
vance [79, 135]. Our provenance framework can also be adapted to provide better measurements
for such metrics, for example, by keeping track of scores instead of proof tree heights.

Finally, the pursuit of faster Datalog evaluation strategies is an ongoing one. Techniques such
as worst-case optimal joins (WCOJ) [119, 120] have been developed in the literature but have yet
to find a foothold in practical systems. These techniques have the potential to asymptotically
speed up Datalog computations with a large number of joins, which is especially critical for our
incremental evaluation framework, as discussed in Section 5.5.2. Since incremental evaluation
results in many different versions of each original Datalog rule, each with several joins, techniques
such as WCOJ can provide huge potential speedups. Even in the absence of WCOJ, query
optimization techniques that are well-established in the database community can also be of
potential interest. Moreover, there may be further opportunities for optimizing incremental
evaluation by using techniques such as user-defined functors.

Bibliography

[1] Xiaowen Hu et al. “The Choice Construct in the Soufflé Language”. In: Asian Symposium
on Programming Languages and Systems. Springer. 2021, pp. 163–181.

[2] David Zhao et al. “Towards Elastic Incrementalization for Datalog”. In: 23rd International
Symposium on Principles and Practice of Declarative Programming. 2021, pp. 1–16.

[3] Xiaowen Hu et al. “An efficient interpreter for Datalog by de-specializing relations”. In:
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation. 2021, pp. 681–695.

[4] David Zhao, Pavle Subotić, and Bernhard Scholz. “Debugging Large-scale Datalog: A
Scalable Provenance Evaluation Strategy”. In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 42.2 (2020), pp. 1–35.

[5] Herbert Jordan et al. “Specializing parallel data structures for Datalog”. In: Concurrency
and Computation: Practice and Experience (2020), e5643.

[6] Mukund Raghothaman et al. “Provenance-guided synthesis of Datalog programs”. In:
Proceedings of the ACM on Programming Languages 4.POPL (2019), pp. 1–27.

[7] Patrick Nappa et al. “Fast parallel equivalence relations in a datalog compiler”. In:
2019 28th International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE. 2019, pp. 82–96.

[8] Herbert Jordan et al. “A Specialized B-tree for Concurrent Datalog Evaluation”. In: Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming.
PPoPP ’19. Washington, District of Columbia: ACM, 2019, pp. 327–339. isbn: 978-1-
4503-6225-2. doi: 10.1145/3293883.3295719. url: http://doi.acm.org/10.1145/
3293883.3295719.

[9] Herbert Jordan et al. “Brie: A specialized trie for concurrent datalog”. In: Proceedings of
the 10th International Workshop on Programming Models and Applications for Multicores
and Manycores. 2019, pp. 31–40.

[10] David Zhao et al. “Scalable Repair of Input Faults in Datalog Using Incrementalized
Provenance”. In: (Under Submission). 2022.

[11] David Maier et al. “Datalog: concepts, history, and outlook”. In: Declarative Logic Pro-
gramming: Theory, Systems, and Applications. 2018, pp. 3–100.

https://doi.org/10.1145/3293883.3295719
http://doi.acm.org/10.1145/3293883.3295719
http://doi.acm.org/10.1145/3293883.3295719

120 BIBLIOGRAPHY

[12] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley Publishing Company, 1995.

[13] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic programming and databases. Springer
Science & Business Media, 2012.

[14] James R Groff, Paul N Weinberg, and Andrew J Oppel. SQL: the complete reference.
Vol. 2. McGraw-Hill/Osborne, 2002.

[15] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. “A general datalog-based frame-
work for tractable query answering over ontologies”. In: Journal of Web Semantics 14
(2012), pp. 57–83.

[16] Wenchao Zhou et al. “Efficient Querying and Maintenance of Network Provenance at
Internet-Scale”. In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (2010), pp. 615–626.

[17] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. “MulVAL: A Logic-based
Network Security Analyzer”. In: Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14. SSYM’05. Baltimore, MD: USENIX Association, 2005, pp. 8–8.
url: http://dl.acm.org/citation.cfm?id=1251398.1251406.

[18] M. Liu et al. “Recursive Computation of Regions and Connectivity in Networks”. In:
2009 IEEE 25th International Conference on Data Engineering. 2009, pp. 1108–1119.
doi: 10.1109/ICDE.2009.36.

[19] John Backes et al. “Reachability Analysis for AWS-Based Networks”. In: Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part II. 2019, pp. 231–241.

[20] Martin Bravenboer and Yannis Smaragdakis. “Strictly Declarative Specification of So-
phisticated Points-to Analyses”. In: SIGPLAN Not. 44.10 (2009), pp. 243–262. issn:
0362-1340. doi: 10.1145/1639949.1640108. url: http://doi.acm.org/10.1145/
1639949.1640108.

[21] Neville Grech et al. “MadMax: Surviving Out-of-Gas Conditions in Ethereum Smart
Contracts”. In: SPLASH 2018 OOPSLA. 2018.

[22] Neville Grech et al. “Gigahorse: Thorough, Declarative Decompilation of Smart Con-
tracts”. In: Proceedings of the 41th International Conference on Software Engineering,
ICSE 2019. Ed. by Joanne M. Atlee, Tevfik Bultan, and Jon Whittle. Montreal, QC,
Canada: ACM, 2019, (to appear). doi: 10.1109/ICSE.2019.00120. url: https://doi.
org/10.1109/ICSE.2019.00120.

[23] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. “Soufflé: On synthesis of program
analyzers”. In: International Conference on Computer Aided Verification. Springer. 2016,
pp. 422–430.

http://dl.acm.org/citation.cfm?id=1251398.1251406
https://doi.org/10.1109/ICDE.2009.36
https://doi.org/10.1145/1639949.1640108
http://doi.acm.org/10.1145/1639949.1640108
http://doi.acm.org/10.1145/1639949.1640108
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1109/ICSE.2019.00120

BIBLIOGRAPHY 121

[24] Molham Aref et al. “Design and Implementation of the LogicBlox System”. In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data. SIGMOD
’15. Melbourne, Victoria, Australia: ACM, 2015, pp. 1371–1382. isbn: 978-1-4503-2758-
9. doi: 10.1145/2723372.2742796. url: http://doi.acm.org/10.1145/2723372.
2742796.

[25] Antonio Flores-Montoya and Eric Schulte. “Datalog Disassembly”. In: arXiv preprint
arXiv:1906.03969 (2019).

[26] Andre Meyer et al. “Today was a good day: The daily life of software developers”. In:
IEEE Transactions on Software Engineering (2019).

[27] Richard Stallman, Roland Pesch, Stan Shebs, et al. “Debugging with GDB”. In: Free
Software Foundation 675 (1988).

[28] J Wiegand et al. “Eclipse: A platform for integrating development tools”. In: IBM Systems
Journal 43.2 (2004), pp. 371–383.

[29] Rafael Caballero, Adrián Riesco, and Josep Silva. “A survey of algorithmic debugging”.
In: ACM Computing Surveys (CSUR) 50.4 (2017), p. 60.

[30] Wentao Han et al. “Chronos: a graph engine for temporal graph analysis”. In: Proceedings
of the Ninth European Conference on Computer Systems. 2014, pp. 1–14.

[31] Stefano Ceri and Jennifer Widom. “Deriving Production Rules for Incremental View
Maintenance”. In: Proceedings of the 17th International Conference on Very Large Data
Bases. VLDB ’91. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1991,
pp. 577–589. isbn: 1-55860-150-3. url: http://dl.acm.org/citation.cfm?id=645917.
672169.

[32] Josep Silva. “A Comparative Study of Algorithmic Debugging Strategies”. In: Logic-
Based Program Synthesis and Transformation. Ed. by Germán Puebla. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 143–159. isbn: 978-3-540-71410-1.

[33] Roger Hoover. “Alphonse: Incremental computation as a programming abstraction”. In:
ACM SIGPLAN Notices 27.7 (1992), pp. 261–272.

[34] Mordechai Ben-Ari. Mathematical logic for computer science. Springer Science & Business
Media, 2012.

[35] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. “Soufflé: On Synthesis of Program
Analyzers”. In: Proceedings of Computer Aided Verification 28 (2016), pp. 422–430.

[36] Leon Sterling and Ehud Y Shapiro. The art of Prolog: advanced programming techniques.
MIT press, 1994.

[37] Jiwon Seo, Stephen Guo, and Monica S Lam. “Socialite: Datalog extensions for efficient
social network analysis”. In: 2013 IEEE 29th International Conference on Data Engineer-
ing (ICDE). IEEE. 2013, pp. 278–289.

[38] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press, 2004.

https://doi.org/10.1145/2723372.2742796
http://doi.acm.org/10.1145/2723372.2742796
http://doi.acm.org/10.1145/2723372.2742796
http://dl.acm.org/citation.cfm?id=645917.672169
http://dl.acm.org/citation.cfm?id=645917.672169

122 BIBLIOGRAPHY

[39] Maarten H Van Emden and Robert A Kowalski. “The semantics of predicate logic as a
programming language”. In: Journal of the ACM (JACM) 23.4 (1976), pp. 733–742.

[40] Anders Møller and Michael I Schwartzbach. “Static program analysis”. In: Notes. Feb
(2012).

[41] Alan Mathison Turing et al. “On computable numbers, with an application to the Entschei-
dungsproblem”. In: J. of Math 58.345-363 (1936), p. 5.

[42] Patrick Cousot. “Abstract interpretation”. In: ACM Computing Surveys (CSUR) 28.2
(1996), pp. 324–328.

[43] Konstantinos Sagonas, Terrance Swift, and David S. Warren. “XSB: An Overview of its
Use and Implementation”. In: SUNY Stony Brook (1993), pp. 11794–4400.

[44] Sergio Greco and Cristian Molinaro. Datalog and Logic Databases. Morgan & Claypool
Publishers, 2015.

[45] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications.” In: Pacific
Journal of Mathematics 5.2 (1955), pp. 285–309. url: https://projecteuclid.org:
443/euclid.pjm/1103044538.

[46] John Whaley et al. “Using Datalog with Binary Decision Diagrams for Program Anal-
ysis”. In: Programming Languages and Systems: Third Asian Symposium, APLAS 2005,
Tsukuba, Japan, November 2-5, 2005. Proceedings. Ed. by Kwangkeun Yi. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2005, pp. 97–118. isbn: 978-3-540-32247-4. doi:
10.1007/11575467_8. url: https://doi.org/10.1007/11575467_8.

[47] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. “Maintaining Views
Incrementally”. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’93. Washington, D.C., USA: ACM, 1993, pp. 157–166.
isbn: 0-89791-592-5. doi: 10.1145/170035.170066. url: http://doi.acm.org/10.
1145/170035.170066.

[48] Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materialized Views: Problems,
Techniques, and Applications. 1995.

[49] Boris Motik et al. “Maintenance of datalog materialisations revisited”. In: Artificial In-
telligence 269 (2019), pp. 76–136.

[50] Frank McSherry et al. “Differential Dataflow”. In: CIDR 2013, Sixth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online
Proceedings. 2013. url: http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.
pdf.

[51] Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura. “µZ– An Efficient Engine
for Fixed Points with Constraints”. In: Computer Aided Verification. Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 457–462. isbn: 978-3-642-22110-1.

[52] Leonid Ryzhyk and Mihai Budiu. “Differential Datalog.” In: Datalog 2 (2019), pp. 4–5.

https://projecteuclid.org:443/euclid.pjm/1103044538
https://projecteuclid.org:443/euclid.pjm/1103044538
https://doi.org/10.1007/11575467_8
https://doi.org/10.1007/11575467_8
https://doi.org/10.1145/170035.170066
http://doi.acm.org/10.1145/170035.170066
http://doi.acm.org/10.1145/170035.170066
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf

BIBLIOGRAPHY 123

[53] Raghu Ramakrishnan et al. “Implementation of the CORAL deductive database system”.
In: Proceedings of the 1993 ACM SIGMOD international conference on Management of
data. 1993, pp. 167–176.

[54] Pavle Subotić et al. “Automatic Index Selection for Large-Scale Datalog Computation”.
In: PVLDB 12.2 (2018), pp. 141–153.

[55] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. “Provenance in Databases: Why,
How, and Where”. In: Foundations and Trends in Databases 1 (2009), pp. 379–474. doi:
10.1561/1900000006.

[56] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. “Selective Provenance for Datalog
Programs Using Top-K Queries”. In: Proceedings of the VLDB Endowment 8 (2015),
pp. 1394–1405.

[57] Sven Köhler, Bertram Ludäscher, and Yannis Smaragdakis. “Declarative Datalog Debug-
ging for Mere Mortals”. In: Lecture Notes in Computer Science 7494 (2012), pp. 111–
122.

[58] Tarun Arora et al. “Explaining Program Execution in Deductive Systems”. In: Proceed-
ings of Deductive and Object-Oriented Databases: Third International Conference (1993),
pp. 101–119.

[59] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. “Why and Where: A Character-
ization of Data Provenance”. In: Proceedings of the International Conference on Database
Theory 1973 (2001), pp. 316–330.

[60] Eugene Wu, Samuel Madden, and Michael Stonebraker. “Subzero: a fine-grained lineage
system for scientific databases”. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE. 2013, pp. 865–876.

[61] Tom Oinn et al. “Taverna: lessons in creating a workflow environment for the life sciences”.
In: Concurrency and computation: Practice and experience 18.10 (2006), pp. 1067–1100.

[62] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. “Provenance Semirings”. In:
Proceedings of the ACM Symposium on Principles of Database Systems (2007), pp. 675–
686.

[63] Dan Suciu et al. “Probabilistic databases”. In: Synthesis lectures on data management 3.2
(2011), pp. 1–180.

[64] Omar Benjelloun et al. “An Introduction to ULDBs and the Trio System”. In: IEEE Data
Engineering Bulletin (2006).

[65] Todd J. Green et al. “Update Exchange with Mappings and Provenance”. In: In Very
Large Data Bases (VLDB). 2007, pp. 675–686.

[66] Michael Curtiss et al. “Unicorn: A system for searching the social graph”. In: Proceedings
of the VLDB Endowment 6.11 (2013), pp. 1150–1161.

https://doi.org/10.1561/1900000006

124 BIBLIOGRAPHY

[67] Deepavali Bhagwat et al. “An Annotation Management System for Relational Databases”.
In: Proceedings of the Thirtieth International Conference on Very Large Data Bases -
Volume 30. VLDB ’04. Toronto, Canada: VLDB Endowment, 2004, pp. 900–911. isbn:
0-12-088469-0. url: http://dl.acm.org/citation.cfm?id=1316689.1316767.

[68] Pierre Senellart et al. “Provsql: Provenance and probability management in postgresql”.
In: Proceedings of the VLDB Endowment (PVLDB) 11.12 (2018), pp. 2034–2037.

[69] Daniel Deutch et al. “Circuits for Datalog Provenance”. In: Conference on Database The-
ory 17 (2014), pp. 201–212. doi: 10.5441/002/icdt.2014.22.

[70] Rafael Caballero, Yolanda García-Ruiz, and Fernando Sáenz-Pérez. “Debugging of wrong
and missing answers for Datalog programs with constraint handling rules”. In: July 2015.
doi: 10.1145/2790449.2790522.

[71] Seokki Lee, Bertram Ludäscher, and Boris Glavic. “PUG: a framework and practical
implementation for why and why-not provenance”. In: The VLDB Journal 28.1 (2019),
pp. 47–71.

[72] Georg Lausen, Bertram Luascher, and Wolfgang May. “On Active Deductive Databases:
The Statelog Approach”. In: Lecture Notes in Computer Science 1472 (1998), pp. 69–106.

[73] Lee Naish. A declarative debugging scheme. Citeseer, 1995.

[74] Rafael Caballero, Yolanda García-Ruiz, and Fernando Sáenz-Pérez. “A theoretical frame-
work for the declarative debugging of datalog programs”. In: International Workshop on
Semantics in Data and Knowledge Bases. Springer. 2008, pp. 143–159.

[75] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. “Thin slicing”. In: ACM SIGPLAN
Notices. Vol. 42. 6. ACM. 2007, pp. 112–122.

[76] Andrew Ko and Brad Myers. “Debugging reinvented”. In: 2008 ACM/IEEE 30th Inter-
national Conference on Software Engineering. IEEE. 2008, pp. 301–310.

[77] Xin Zhang et al. “Effective Interactive Resolution of Static Analysis Alarms”. In: Proc.
ACM Program. Lang. 1.OOPSLA (Oct. 2017), 57:1–57:30. issn: 2475-1421. doi: 10.

1145/3133881. url: http://doi.acm.org/10.1145/3133881.

[78] Ravi Mangal et al. “A User-guided Approach to Program Analysis”. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015. Berg-
amo, Italy: ACM, 2015, pp. 462–473. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.
2786851. url: http://doi.acm.org/10.1145/2786805.2786851.

[79] Mukund Raghothaman et al. “User-guided program reasoning using Bayesian inference”.
In: June 2018, pp. 722–735. doi: 10.1145/3192366.3192417.

[80] Xin Zhang et al. “On Abstraction Refinement for Program Analyses in Datalog”. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’14. Edinburgh, United Kingdom: ACM, 2014, pp. 239–248.
isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594327. url: http://doi.acm.org/
10.1145/2594291.2594327.

http://dl.acm.org/citation.cfm?id=1316689.1316767
https://doi.org/10.5441/002/icdt.2014.22
https://doi.org/10.1145/2790449.2790522
https://doi.org/10.1145/3133881
https://doi.org/10.1145/3133881
http://doi.acm.org/10.1145/3133881
https://doi.org/10.1145/2786805.2786851
https://doi.org/10.1145/2786805.2786851
http://doi.acm.org/10.1145/2786805.2786851
https://doi.org/10.1145/3192366.3192417
https://doi.org/10.1145/2594291.2594327
http://doi.acm.org/10.1145/2594291.2594327
http://doi.acm.org/10.1145/2594291.2594327

BIBLIOGRAPHY 125

[81] Boris Motik et al. “Incremental update of datalog materialisation: the backward/forward
algorithm”. In: Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

[82] Pan Hu, Boris Motik, and Ian Horrocks. “Optimised maintenance of datalog materialisa-
tions”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[83] Martín Abadi, Frank McSherry, and Gordon D. Plotkin. “Foundations of Differential
Dataflow”. In: Foundations of Software Science and Computation Structures - 18th Inter-
national Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. 2015, pp. 71–83. doi: 10.1007/978- 3- 662- 46678- 0_5. url: https:
//doi.org/10.1007/978-3-662-46678-0_5.

[84] Derek Gordon Murray et al. “Naiad: a timely dataflow system”. In: ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, Novem-
ber 3-6, 2013. 2013, pp. 439–455. doi: 10.1145/2517349.2522738. url: http://doi.
acm.org/10.1145/2517349.2522738.

[85] Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. “Incremental whole-program
analysis in Datalog with lattices”. In: Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation. 2021, pp. 1–
15.

[86] Jose A. Blakeley et al. “Efficiently Updating Materialized Views”. In: 1986, pp. 61–71.

[87] Eric Hanson. “Efficient Support for Rules and Derived Objects in Relational Database
Systems”. PhD thesis. University of California, Berkeley, 1987.

[88] A. Rosenthal et al. “Situation Monitoring for Active Databases”. In: Proceedings of the
15th International Conference on Very Large Data Bases. VLDB ’89. Amsterdam, The
Netherlands: Morgan Kaufmann Publishers Inc., 1989, pp. 455–464. isbn: 1-55860-101-5.
url: http://dl.acm.org/citation.cfm?id=88830.88915.

[89] Andreas Zeller. “Yesterday, my program worked. Today, it does not. Why?” In: ACM
SIGSOFT Software engineering notes 24.6 (1999), pp. 253–267.

[90] Andreas Zeller and Ralf Hildebrandt. “Simplifying and isolating failure-inducing input”.
In: IEEE Transactions on Software Engineering 28.2 (2002), pp. 183–200.

[91] Purdue University Department of Computer Science. Delta Debugging. Accessed: 08-12-
2021. 2016. url: https://www.cs.purdue.edu/homes/suresh/408- Spring2017/

Lecture-9.pdf.

[92] Ghassan Misherghi and Zhendong Su. “HDD: Hierarchical delta debugging”. In: Proceed-
ings of the 28th international conference on Software engineering. 2006, pp. 142–151.

[93] Cyrille Artho. “Iterative delta debugging”. In: International Journal on Software Tools
for Technology Transfer 13.3 (2011), pp. 223–246.

[94] Renáta Hodován and Ákos Kiss. “Modernizing hierarchical delta debugging”. In: Proceed-
ings of the 7th International Workshop on Automating Test Case Design, Selection, and
Evaluation. 2016, pp. 31–37.

https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1145/2517349.2522738
http://doi.acm.org/10.1145/2517349.2522738
http://doi.acm.org/10.1145/2517349.2522738
http://dl.acm.org/citation.cfm?id=88830.88915
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf
https://www.cs.purdue.edu/homes/suresh/408-Spring2017/Lecture-9.pdf

126 BIBLIOGRAPHY

[95] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. “Coarse hierarchical delta debugging”.
In: 2017 IEEE international conference on software maintenance and evolution (ICSME).
IEEE. 2017, pp. 194–203.

[96] Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. “HDDr: a recursive variant of the
hierarchical delta debugging algorithm”. In: Proceedings of the 9th ACM SIGSOFT Inter-
national Workshop on Automating TEST Case Design, Selection, and Evaluation. 2018,
pp. 16–22.

[97] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming. 1993.

[98] Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. “Justifications for
logic programming”. In: International Conference on Logic Programming and Nonmono-
tonic Reasoning. Springer. 2013, pp. 530–542.

[99] Xue Li, Alan Bundy, and Alan Smaill. “ABC Repair System for Datalog-like Theories.”
In: KEOD. 2018, pp. 333–340.

[100] J Balsa, V Dahl, and JG Pereira Lopes. “Datalog grammars for abductive syntactic error
diagnosis and repair”. In: Proc. Natural Language Understanding and Logic Programming
Workshop. Citeseer. 1995.

[101] Loreto Bravo and Leopoldo E. Bertossi. “Consistent query answering under inclusion
dependencies”. In: Proceedings of the 2004 conference of the Centre for Advanced Studies
on Collaborative research, October 5-7, 2004, Markham, Ontario, Canada. Ed. by Hanan
Lutfiyya, Janice Singer, and Darlene A. Stewart. IBM, 2004, pp. 202–216.

[102] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. “Answer sets for consistent
query answering in inconsistent databases”. In: Theory Pract. Log. Program. 3.4-5 (2003),
pp. 393–424.

[103] Ofer Arieli et al. “Database repair by signed formulae”. In: International Symposium on
Foundations of Information and Knowledge Systems. Springer. 2004, pp. 14–30.

[104] Xujie Si et al. “Syntax-guided synthesis of datalog programs”. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 2018, pp. 515–527.

[105] Xujie Si et al. “Synthesizing datalog programs using numerical relaxation”. In: arXiv
preprint arXiv:1906.00163 (2019).

[106] Stephen Muggleton. “Inductive logic programming”. In: New generation computing 8.4
(1991), pp. 295–318.

[107] Stephen Muggleton and Luc De Raedt. “Inductive logic programming: Theory and meth-
ods”. In: The Journal of Logic Programming 19 (1994), pp. 629–679.

[108] Luc De Raedt. Logical and relational learning. Springer Science & Business Media, 2008.

[109] Stephen H Muggleton et al. “Meta-interpretive learning: application to grammatical in-
ference”. In: Machine learning 94.1 (2014), pp. 25–49.

BIBLIOGRAPHY 127

[110] Seokki Lee, Bertram Ludäscher, and Boris Glavic. “Provenance Summaries for Answers
and Non-answers”. In: Proc. VLDB Endow. 11.12 (Aug. 2018), pp. 1954–1957. issn: 2150-
8097. doi: 10.14778/3229863.3236233. url: https://doi.org/10.14778/3229863.
3236233.

[111] David Zhao. “Honours Thesis: Large-Scale Provenance for Soufflé”. In: (2017).

[112] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. “Efficient provenance tracking for
datalog using top-k queries”. In: The VLDB Journal 27.2 (2018), pp. 245–269. issn: 0949-
877X. doi: 10.1007/s00778-018-0496-7. url: https://doi.org/10.1007/s00778-
018-0496-7.

[113] Derek Murray et al. “Naiad: A Timely Dataflow System”. In: Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP). ACM, 2013.

[114] Grigoris Karvounarakis et al. “Collaborative Data Sharing via Update Exchange and
Provenance”. In: ACM Trans. Database Syst. 38.3 (Sept. 2013). issn: 0362-5915.

[115] Dino Distefano et al. “Scaling Static Analyses at Facebook”. In: Commun. ACM 62.8
(July 2019), 62–70. issn: 0001-0782.

[116] Pavle Subotić. “Concise Explanations in Static Analysis Driven Code Reviews”. Infer
Practitioners 2020. 2020. url: https://www.youtube.com/watch?v=FPCZ2TIxrpg&t=
8888s.

[117] Nathan Chong et al. “Code-Level Model Checking in the Software Development Work-
flow”. In: Proceedings of the ACM/IEEE 42nd International Conference on Software En-
gineering: Software Engineering in Practice. ICSE-SEIP ’20. Seoul, South Korea: Asso-
ciation for Computing Machinery, 2020, 11–20. isbn: 9781450371230. doi: 10.1145/

3377813.3381347. url: https://doi.org/10.1145/3377813.3381347.

[118] Pan Hu, Boris Motik, and Ian Horrocks. “Modular Materialisation of Datalog Programs”.
In: (2019).

[119] Todd L Veldhuizen. “Leapfrog triejoin: A simple, worst-case optimal join algorithm”. In:
arXiv preprint arXiv:1210.0481 (2012).

[120] Hung Q Ngo et al. “Worst-case optimal join algorithms”. In: Journal of the ACM (JACM)
65.3 (2018), pp. 1–40.

[121] Alexander Shkapsky et al. “Big data analytics with datalog queries on spark”. In: Pro-
ceedings of the 2016 International Conference on Management of Data. 2016, pp. 1135–
1149.

[122] Muhammad Imran, Gábor E Gévay, and Volker Markl. “Distributed Graph Analytics
with Datalog Queries in Flink”. In: Software Foundations for Data Interoperability and
Large Scale Graph Data Analytics. Springer, 2020, pp. 70–83.

[123] Alan L Rector, Jeremy E Rogers, and Pam Pole. “The GALEN high level ontology”. In:
Medical Informatics Europe’96. IOS Press, 1996, pp. 174–178.

https://doi.org/10.14778/3229863.3236233
https://doi.org/10.14778/3229863.3236233
https://doi.org/10.14778/3229863.3236233
https://doi.org/10.1007/s00778-018-0496-7
https://doi.org/10.1007/s00778-018-0496-7
https://doi.org/10.1007/s00778-018-0496-7
https://www.youtube.com/watch?v=FPCZ2TIxrpg&t=8888s
https://www.youtube.com/watch?v=FPCZ2TIxrpg&t=8888s
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/3377813.3381347

128 BIBLIOGRAPHY

[124] Nicholas Allen, Bernhard Scholz, and Padmanabhan Krishnan. “Staged Points-to Analy-
sis for Large Code Bases”. In: Compiler Construction: 24th International Conference, CC
2015, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015, Proceedings. Springer Berlin Heidelberg,
2015, pp. 131–150. isbn: 978-3-662-46663-6. doi: 10.1007/978-3-662-46663-6_7.

[125] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. “Datalog and Emerging
Applications: An Interactive Tutorial”. In: Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of Data. SIGMOD ’11. Athens, Greece: ACM,
2011, pp. 1213–1216. isbn: 978-1-4503-0661-4. doi: 10.1145/1989323.1989456. url:
http://doi.acm.org/10.1145/1989323.1989456.

[126] Github CodeQL. Accessed: 19-10-2021. 2021. url: https://codeql.github.com/.

[127] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. “Querying Data Provenance”.
In: SIGMOD ’10. Indianapolis, Indiana, USA: Association for Computing Machinery,
2010, 951–962. isbn: 9781450300322. doi: 10.1145/1807167.1807269. url: https:

//doi.org/10.1145/1807167.1807269.

[128] Alexander Schrijver. Theory of Linear and Integer Programming. USA: John Wiley &
Sons, Inc., 1986. isbn: 0471908541.

[129] S. M. Blackburn et al. “The DaCapo Benchmarks: Java Benchmarking Development and
Analysis”. In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-Oriented Programing, Systems, Languages, and Applications. Portland, OR, USA:
ACM Press, Oct. 2006, pp. 169–190. doi: http://doi.acm.org/10.1145/1167473.
1167488.

[130] John Hooker. “Generalized resolution for 0–1 linear inequalities”. In: Annals of Mathe-
matics and Artificial Intelligence 6 (Mar. 1992), pp. 271–286. doi: 10.1007/BF01531033.

[131] Stephen M Blackburn et al. “The DaCapo benchmarks: Java benchmarking development
and analysis”. In: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications. 2006, pp. 169–190.

[132] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. “From Datalog to Flix: A Declarative
Language for Fixed Points on Lattices”. In: Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI ’16. Santa Barbara,
CA, USA: ACM, 2016, pp. 194–208. isbn: 978-1-4503-4261-2. doi: 10.1145/2908080.
2908096. url: http://doi.acm.org/10.1145/2908080.2908096.

[133] Scott M Lundberg et al. “From local explanations to global understanding with explain-
able AI for trees”. In: Nature machine intelligence 2.1 (2020), pp. 56–67.

[134] Wojciech Samek et al. Explainable AI: interpreting, explaining and visualizing deep learn-
ing. Vol. 11700. Springer Nature, 2019.

[135] Ke Yang and Julia Stoyanovich. “Measuring fairness in ranked outputs”. In: Proceedings
of the 29th international conference on scientific and statistical database management.
2017, pp. 1–6.

https://doi.org/10.1007/978-3-662-46663-6_7
https://doi.org/10.1145/1989323.1989456
http://doi.acm.org/10.1145/1989323.1989456
https://codeql.github.com/
https://doi.org/10.1145/1807167.1807269
https://doi.org/10.1145/1807167.1807269
https://doi.org/10.1145/1807167.1807269
https://doi.org/http://doi.acm.org/10.1145/1167473.1167488
https://doi.org/http://doi.acm.org/10.1145/1167473.1167488
https://doi.org/10.1007/BF01531033
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
http://doi.acm.org/10.1145/2908080.2908096

	List of Figures
	List of Tables
	Introduction
	Thesis Structure

	Datalog
	Logic and Datalog
	Syntax of Datalog
	Running Example
	Pointer Analysis in Datalog

	Semantics and Evaluation of Datalog
	Model-theoretic semantics
	Bottom-Up Evaluation
	Top-Down Evaluation

	Datalog Engines
	Soufflé

	Related Work
	Provenance
	Classification of Provenance
	Provenance in Datalog

	Incremental Evaluation
	Datalog
	Differential Dataflow
	Databases

	Debugging and Repair
	Delta Debugging
	Logic Programming Repair
	Synthesis

	Large-Scale Provenance in Datalog
	The Datalog Debugging Problem
	Motivation and Problem Statement
	Use Case: Program Analysis
	Proof Trees and Problem Statement

	A New Provenance Method
	Standard Bottom-Up Evaluation
	Provenance Evaluation Strategy
	Proof Tree Construction by Provenance Queries
	Provenance for Non-Existence of Tuples via User Interaction
	Alternative Proof Tree Shapes

	Implementation in Soufflé
	Implementing a Proof Tree Construction User Interface

	Experiments
	Performance of the Provenance Evaluation Strategy
	Proof Tree Construction
	Characteristics of Proof Trees

	Chapter Summary

	Elastic Incremental Evaluation for Datalog
	Incremental Evaluation
	Background
	Semi-Naïve Evaluation
	Incremental Datalog Evaluation

	Current Incremental Evaluations
	Bootstrap Algorithm
	Incremental Update Algorithm

	Elastic Incremental Evaluation
	Bootstrap Algorithm
	Incremental Update Algorithm
	Stratified Negation and Constraints

	Implementation in Soufflé
	Core Implementation
	Optimizations

	Experimental Evaluation
	Single Strategy Incremental Evaluation
	Elastic Incremental Evaluation

	Chapter Summary

	Input Debugging with Incremental Provenance
	Fault Localization and Input Debugging
	Motivating Example
	Delta Debugging

	Incremental Provenance
	Incremental Input Debugging
	System Overview
	Fault Localization
	Input Debugging Suggestion
	Extensions
	Full Algorithm
	Correctness and Optimality

	Experiments
	Experimental Setup
	Performance
	Quality
	Overall Scalability

	Chapter Summary

	Conclusion
	Future Work

	Bibliography

