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Logic programming languages such as Datalog have become popular as Domain Specific Languages (DSLs)

for solving large-scale, real-world problems, in particular, static program analysis and network analysis. The

logic specifications that model analysis problems process millions of tuples of data and contain hundreds of

highly recursive rules. As a result, they are notoriously difficult to debug. While the database community has

proposed several data provenance techniques that address the Declarative Debugging Challenge for Databases,

in the cases of analysis problems, these state-of-the-art techniques do not scale.

In this article, we introduce a novel bottom-up Datalog evaluation strategy for debugging: Our provenance

evaluation strategy relies on a new provenance lattice that includes proof annotations and a new fixed-point

semantics for semi-naïve evaluation. A debugging query mechanism allows arbitrary provenance queries,

constructing partial proof trees of tuples with minimal height. We integrate our technique into Soufflé, a

Datalog engine that synthesizes C++ code, and achieve high performance by using specialized parallel data

structures. Experiments are conducted with Doop/DaCapo, producing proof annotations for tens of millions

of output tuples. We show that our method has a runtime overhead of 1.31× on average while being more

flexible than existing state-of-the-art techniques.
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1 INTRODUCTION

Datalog and other logic specification languages [Aref et al. 2015; Hoder et al. 2011; Jordan et al.
2016; Madsen et al. 2016] have seen a rise in popularity in recent years, being widely used to solve
real-world problems including program analysis [Allen et al. 2015; Jordan et al. 2016], declarative
networking [Huang et al. 2011; Zhou et al. 2010], security analysis [Ou et al. 2005], and business
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applications [Aref et al. 2015]. Logic programming provides declarative semantics for computation,
resulting in succinct program representations and rapid-prototyping capabilities for scientific and
industrial applications. Rather than prescribing the computational steps imperatively, logic spec-
ifications define the intended result declaratively and thus can express computations concisely.
For example, logic programming has gained traction in the area of program analysis due to its
flexibility in building custom program analyzers [Jordan et al. 2016], points-to analyses for Java
programs [Bravenboer and Smaragdakis 2009], and security analysis for smart contracts [Grech
et al. 2018, 2019].

Despite the numerous advantages, the declarative semantics of Datalog poses a debugging chal-
lenge. Strategies employed in debugging imperative programs such as inspecting variables at given
points in the program execution do not translate to declarative programming. Logic specifications
lack the notions of state and state transitions. Instead, they have relations that contain tuples.
These relations may be input relations, such as those describing the instance of an analysis, inter-
mediate relations, or output relations, such as those containing the results of an analysis. Relations
can only be viewed in full, without any explanation of the origin or derivation of data, after the
completion of a complicated evaluation strategy. Thus, the Datalog user will find the results alone
of logic evaluation inconclusive for debugging purposes.

When debugging Datalog specifications, there are two main scenarios: (1) an unexpected output
tuple appears or (2) an expected output tuple does not appear. These may occur as a result of a fault
in the input data, and/or a fault in the logic rules. Both scenarios call for mechanisms to explain
how an output tuple is derived, or why the tuple cannot be derived from the input tuples. The
standard mechanism for these explanations is a proof tree. In the case of explaining the existence
of an unexpected tuple, a proof tree describes formally the sequence of rule applications involved
in generating the tuple. However, a failed proof tree, where at least one part of the proof tree does
not hold, may explain why an expected tuple cannot be derived in the logic specification. These
proof trees can be seen as a form of data provenance witness, that is, an explanation vehicle for the
origins of data [Buneman et al. 2001; Cheney et al. 2009].

In the presence of complex Datalog specifications and large datasets, Datalog debugging be-
comes an even bigger challenge. While recent developments in Datalog evaluation engines, such
as Soufflé [Jordan et al. 2016], have enabled the effective evaluation of complex Datalog spec-
ifications with large data using scalable bottom-up evaluation strategies [Ramakrishnan and
Sudarshan 1991; Ullman 1989], unlike top-down evaluation, bottom-up evaluation does not have
an explicit notion of a proof tree in its evaluation. Therefore, to facilitate debugging in bottom-up
evaluation, state-of-the-art [Deutch et al. 2015; Köhler et al. 2012; Lee et al. 2017] techniques have
been developed that rewrite the Datalog specification with provenance information. Using these
techniques, Datalog users follow a debugging cycle that allows them to find anomalies in the input
relations and/or the logic rules. In such setups, the typical debugging cycle comprises the phases
of (1) defining an investigation query, (2) evaluating the logic specification to produce provenance
witness, (3) investigating the faults based on the provenance information, and (4) fixing the faults.
For complex Datalog specifications, the need for re-evaluation for each investigation is impracti-
cal. For example, Doop [Bravenboer and Smaragdakis 2009] with a highly precise analysis setting
may take multiple days to evaluate for medium to large-sized Java programs. Although state-of-
the-art approaches scale for the database querying use cases, such approaches are not practical for
industrial scale static analysis problems.

A further difficulty in developing debugging support for Datalog is providing understandable
provenance witnesses. Use cases such as program analysis tend to produce proof trees of very large
height. For example, investigations on medium sized program analyses in Doop have minimal
height proof trees of over 200 nodes. Therefore, a careful balance must be struck between enough
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information and readability in the debugging witnesses. Our approach limits information overload
and handles large proof trees by allowing the user to interactively explore relevant fragments of
the proof trees.

In this article, we present a novel debugging approach that targets Datalog programs with char-
acteristics of those found in static program analysis. Our approach scales to large dataset and
ruleset sizes and provides succinct and interactively navigable provenance information.

The first aspect of our technique is a novel Datalog provenance evaluation strategy that aug-
ments the intensional database (IDB) with Proof Annotations and hence allows fast proof tree explo-
ration for all debugging queries, without the need for re-evaluation. The exploration uses the proof
annotations to construct proof trees for tuples lazily, i.e., a debugging query for a tuple produces
the rule and the subproofs of the rule. The subproofs when expanded in consecutive debugging
queries, will produce a minimal height proof tree for the given tuple. Our system also supports
non-existence explanations of a tuple. In this case, proof annotations are not helpful, since they
cannot describe non-existent tuples. Thus, we adapt an approach from [Lee et al. 2018] to provide
a user-guided procedure for explaining the non-existence of tuples.

We implement the provenance evaluation strategy in the synthesis framework of Soufflé [Jordan
et al. 2016] to produce specialized data structures and an interactive debugging query system for
each logic specification. Our approach is tightly integrated into the Soufflé engine and achieves
higher performance than existing provenance approaches when more than one provenance
query is run. We demonstrate the feasibility of our technique through the complex Java points-to
framework, Doop, running the Java DaCapo benchmark suite, which produces tens of millions of
output tuples. We demonstrate that the initial implementation of our novel provenance method
incurs a runtime overhead of 1.31×, and memory consumption overhead of 1.76× on average.

Our contributions in this work are as follows:

• a provenance evaluation strategy for Datalog specifications: defining a new evaluation do-
main based on a provenance lattice that extends the standard Datalog subset lattice with
proof annotations, and leveraging parallel bottom-up evaluation to give minimal height
proof trees,

• a provenance query system for constructing minimal height proof trees utilizing proof an-
notations, allowing effective bug investigation with a minimum number of user interactions,

• an efficient and scalable integration of the proof tree generator system into Soufflé, using
specialized data structures for storing proof annotations, and

• large-scale experiments using the Doop program analysis framework with DaCapo bench-
marks with tens of millions of tuples, measuring on average 1.31× overheads for runtime
and 1.76× overheads for memory.

The article is organized as follows: In Section 2, we motivate our provenance method and de-
scribe its use in a real-world program analysis use case. In Section 3, we detail the theoretical
basis of our method with regards to the provenance evaluation strategy along with the prove-
nance queries to construct proof trees for tuples. We also demonstrate the minimality properties
and present the practical solution that results from this theory. In Section 4, we detail the imple-
mentation of our system in Soufflé. In Section 5, we present experiments that show the feasibility
of our provenance system. In Section 6, we outline related work, and we conclude in Section 7.

2 MOTIVATION AND PROBLEM STATEMENT

Real-world Datalog specifications for applications such as program analysis can often contain up
to hundreds of mutually recursive rules. With such complex applications, bugs are a common
occurrence during the development cycle of a Datalog specification. Buggy Datalog code may

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 2, Article 7. Publication date: April 2020.



7:4 D. Zhao et al.

Fig. 1. Program analysis datalog setup.

manifest itself in two main ways: (1) It produces an unexpected output tuple or (2) it fails to produce
an expected output tuple.

A common approach to characterize the evaluation of a Datalog specification is through proof

trees. A proof tree for a tuple describes the derivation of that tuple from input tuples and rules.
During the debugging cycle, the presence of any unexpected tuples can be explained by producing
a valid proof tree, where all nodes of the proof tree hold. However, a failed proof tree, where at least
one part of the proof tree fails to hold, provides valuable insight into why a tuple is not produced.
Therefore, both valid and failed proof trees are critical for investigation into anomalies.

Note that potentially there could be an infinite number of valid proof trees for the explanation of
any given tuple. However, Datalog developers desire concise proof trees such that that the faulty
behavior of the logic specification is revealed quickly. In this section, we describe how proof trees
can be used to debug a Datalog specification and an overview of our method for generating minimal
proof trees for output tuples.

2.1 Use Case: Program Analysis

2.1.1 Points-To Analysis. We illustrate the utility of debugging the presence of unexpected tu-
ples via proof trees through a program analysis use case. Figure 1 illustrates a points-to analysis
implemented in Datalog. The points-to analysis resembles a field-sensitive but flow-insensitive
analysis [Sridharan et al. 2005]. The input relations (also known as EDB) of the logic specifica-
tion are the relations new, assign, load, and store express the input program in relational form. The
relation new represent the object-creation sites of the input program, the relation assign the assign-
ments, and relations load/store the read and write accesses of objects via a field. Figure 1(a) shows
an input program encoded in the form of input relations in Figure 1(b). The graph in Figure 2 rep-
resents the input relations. The nodes represent either object-creation sites or variables. The edges
are object-creation sites, assignments, and load/store instructions. The graph shows a clear separa-
tion between objects of l4 with objects l1 and l3. The goal is to compute the var-points-to set in the
form of the output relation vpt. The Datalog rules computing the var-points-to set are given in Fig-
ure 1(c). The first rule makes the variable Var point to object Obj, where Obj is the line number of
the object-creation site as an abstraction for all possible objects that could be created by this object-
creation site. The second rule shows the transfer of the var-points-to set from source Var2 of the
assignment to its destination Var. The third rule transfers the var-points-to set from the source of a
store instruction Q to the destination of a load instruction Var. The transfer is conditional depend-
ing on whether field F of the load and store instructions match and whether the instance variable Y
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Fig. 2. Points-to input diagram.

Fig. 3. Full proof tree for alias (a,b).

Fig. 4. Infinitely many derivations for vpt (b, l1), resulting from the circular assignment in lines l2 and l8 in
the input program.

of the load and the instance variable P of the store instruction may point to the same object (Var2).
The last rule expresses the alias relation between variables Var1 and Var2, i.e., two variables alias
if they share at least one object-creation site Obj in their var-points-to sets. The relations vpt and
alias are the output of the analysis and are called the IDB of the Datalog specification.

2.1.2 Minimal Height Proof Trees. The analysis example in Figure 1 computes the output rela-
tion alias that captures the alias information of two variables. A user may investigate why a tuple
(a,b) exists in the output relation alias, i.e., how the analysis derives alias(a,b) from the input data
via the rules. Intuitively, this information is contained in the points-to input diagram (cf. Figure 2)
showing that variables a and b may reach the same object. However, it is not an explanation, as
a proof tree would be, for the tuple alias(a,b) as shown in Figure 3. The proof tree shows that
alias(a,b) is derived by rule r4 using the facts vpt (a, l1) and vpt (b, l1). This outcome is expected,
since it tells us that a and b point to the same object (l1 in this case), and thus they may alias.

The importance of minimality of proof tree height is shown in Figure 4, which depicts the proof
tree resulting from the assignment in line l2 in the input program. In the input program, there is
a circular assignment in lines l2 and l8 caused by the flow-insensitivity of the input program, and
thus the tuple vpt (b, l1) could be derived in an arbitrary number of rule applications, as shown in
Figure 4.

Thus, even for this small example, there are infinitely many valid proof trees for the tuple
alias(a,b). A provenance system ought to produce the most concise proof tree so that an end
user can understand the derivation of a tuple with the least effort.
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Fig. 5. Interactive exploration of fragments of a proof tree for t .

2.1.3 Proof Tree Fragments for Debugging. Suppose a Datalog user discovers an unexpected
tuple in the output, which indicates that a fault exists somewhere in the logic specification. The
aim is to investigate the root cause of this fault. Since proof trees provide explanations for the
existence of a tuple, the proof tree of an unexpected tuple will help identify the fault in the logic
specification.

An example fault could be if rule r3 was altered as follows:

r3: vpt(Var, Obj) :- load(Var, Y, F),

store(P, F, Q),

vpt(Q, Obj),

vpt(P, Obj1),

vpt(Y, Obj2).

Note the condition that objects P and Y must alias now no longer holds. A minor typo may have
introduced this fault, and as a consequence of this typo, the analysis produces the extra tuple (a, e )
in relation alias. This additional tuple becomes a symptom of the fault. To diagnose this fault, the
proof tree of tuple alias(a, e ) highlights the root cause of the fault.

However, in practice, a full proof tree may be too large to provide a meaningful explanation
even if it is of minimal height, and as experiments in Section 5 show, proof trees for real-world
program analyses (e.g., Doop) can exceed heights of 200. Thus a Datalog user may want to explore
only relevant fragments of it interactively. A fragment of a proof tree is a partial subtree, which
consists of some number of levels. For instance, we may construct fragments comprising of 2 levels
to explore only parts of the proof tree that are relevant.

We illustrate the exploration of fragments of the proof tree in Figure 5. In the figure, tuple
t denotes the symptom of the fault, i.e., t is an unexpected tuple in the output. The aim is to
explore the proof tree for t to find the root cause for this fault. In our example, the user follows the
scent of the fault by expanding proof tree fragments that show anomalies. This process produces a
path of exploration in the proof tree. The path of exploration discovers the root cause of the fault
efficiently, without constructing and displaying the full proof tree of an output tuple.

Concretely, we may wish to explain the tuple alias(a, e ). Figure 6 illustrates the exploration of
an explanation for alias(a, e ) by generating proof tree fragments of 2 levels at a time. The user
generates the first fragment and decides that vpt (e, l1) is the most relevant explanation for the
fault, and continues down this path. As a result, the root cause (for example, the erroneous rule r3)
is discovered after two fragments. This interaction mechanism also justifies the choice to minimize
the height of proof trees. By doing this, we minimize the number of user interactions (i.e., proof
tree fragments) required to discover the root cause for an anomaly.
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Fig. 6. Exploring the proof of alias (a, e ) to find the erroneous rule r3.

2.1.4 Debugging Non-Existent Tuples. However, the non-existence of a tuple may also indicate
a fault in the Datalog specification. Moreover, when the Datalog specification includes negations,
the non-existence of an expected tuple may lead to the existence of an unexpected tuple and vice
versa. In the running example, the input data may be missing the tuple assiдn(b,a). In this case,
the analysis would not consider all cases of assignment in the source program. In our example, the
tuple vpt (b, l1) would not be produced with the altered input data. However, a developer would
expect that the assignment in l2 would cause the tuple to exist, and thus may wish to examine the
reason for the tuple’s non-existence.

Logically, the non-existence of a tuple results from there being no valid proof tree for that tuple.
Therefore, to “explain” the non-existence of a tuple, we must show that every attempt to construct
a proof tree eventually fails. However, since this is an infinite search space, automated techniques
are not tractable. Therefore, we adapt a semi-automated approach from [Lee et al. 2018], using algo-
rithmic debugging ideas [Caballero et al. 2017] to ask queries of the user to aid the construction of a
single failed proof tree. Such a failed proof tree may provide valuable insight into the non-existence
of the tuple. Further details for debugging non-existent tuples are presented in Section 3.4.

2.2 Proof Trees and Problem Statement

We use standard terminology for Datalog, taken from Abiteboul et al. [1995]. A Datalog specifi-
cation P consists of a set of rules, of the form R0 (X0) :- R1 (X1), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn ). Each
Ri (Xi ) is a predicate, consisting of a relation name Ri and an argument Xi consisting of the correct
number of variables and constants. The term ψ (X1, . . . ,Xn ) denotes a conjunction of constraints
on the variables in the rule. These constraints may include, for example, arithmetic constraints
(such as less than), or negation of a predicate. A predicate can be instantiated to form a tuple

where each variable is mapped to a constant. An instantiated rule is a rule with each predicate
replaced by its instantiation such that the variable mappings are consistent between predicates
and the constraints are satisfied. An instance I is a set of tuples, and we denote the input instance
to be EDB.

Given a Datalog specification P , an input instance EDB of P , and a tuple t produced by P , we
want to find a proof tree of minimal height for t . We define a proof tree as follows:

Definition 2.1 (Proof Tree). Let P be a Datalog specification, and let EDB be an input instance. A
proof tree τt for a tuple t computed by P is a labeled tree where (1) each vertex is labeled with a
tuple, (2) each leaf is labeled with an input tuple in EDB, (3) the root is labeled with t , and (4) for
a vertex labeled with t0, there is a valid instantiation t0 :- t1, . . . , tn of a rule ρ in P such that the
direct children of t0 are labeled with t1, . . . , tn . Moreover, the vertex is associated with ρ.

A proof tree for t can be viewed as an explanation for the existence of t , by showing how it is
derived from other tuples using the rules in the Datalog specification.

To formalize the problem statement, we need to characterize proof trees of minimal height. Note
that the set of proof trees for a Datalog specification could be constructed inductively by the height
of the trees. We denote τt to be a proof tree for tuple t , andT k to be the set of proof trees of height
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Fig. 7. One level of a proof tree of minimal height for t .

at most k . This construction leads to a convenient description of what it means for a proof tree to
be of minimal height.

Definition 2.2. We define the set of all proof trees inductively. Let T 0 = {τt | t ∈ EDB} be the

set of proof trees for tuples in the input instance. Then, define T k in terms of T k−1: T k =

{τt | t :- t1, . . . , tn is a valid instantiation and ∀ti : ∃τti
∈ T k−1} Then, T =

⋃
i≥0T

i is the set of all
proof trees produced by the specification P .

Note that eachT k consists of proof trees of height at most k , since if t :- t1, . . . , tn is an instanti-
ation of a rule, then the height of the proof tree for t is equal to the maximum height of the proof
trees for t1, . . . , tn plus 1. By defining the set of proof trees inductively, a proof tree of minimal
height for a given tuple t has height given by

min
{
k ≥ 0 | ∃τt ∈ T k

}
.

Intuitively, this means that a proof tree for a tuple t is of minimal height if there does not
exist another valid proof tree with a smaller height. We emphasize that a valid proof tree must
exist, since we have assumed that tuple is in the IDB of the Datalog specification and therefore
its existence can be proved. Based on this inductive construction of proof trees, we reduce the
problem of generating a fragment of a proof tree into the following incremental search problem.

Problem statement. Let P be a Datalog specification, and I be the instance computed by P . Given
a tuple t ∈ I , find the tuples t1, . . . , tn such that t :- t1, . . . , tn is a valid instantiation of a rule in P
leading to a minimal height proof tree.

The problem statement is illustrated in Figure 7, where tuples t1, . . . , tn form the direct children
of t in a minimal height proof tree. We also can denote t1, . . . , tn to be a configuration of the
body of the corresponding rule. If this problem statement can be solved, then such a solution
can be applied recursively to construct the subtrees rooted at each ti , which would then form
valid proof trees for those tuples. Thus, this recursive construction solves the original problem of
constructing a fragment of the proof tree of minimal height. Once a certain number of levels have
been constructed, or if the only remaining leaves are in the EDB (characterized by having a proof
tree consisting of only a single node), then the fragment is complete.

3 A NEW PROVENANCE METHOD

A simple, partial solution to the problem might be to evaluate the Datalog specification using a
standard evaluation strategy and then generate a proof tree by brute-force searching for a matching
configuration for the body of a rule. However, this is an unfeasible approach for real-world prob-
lems where the resulting instance may contain millions of tuples, and there are also no guarantees
that the proof trees produced in this manner are of minimal height. Alternatively, the Datalog eval-
uation strategy could be augmented to store minimal height proof trees as part of the computation;
however, this would quickly run out of memory on even moderately sized instances.
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Fig. 8. Synthesized Proof Tree Generator system.

Moreover, the two main evaluation strategies for Datalog, bottom-up and top-down are unsuit-
able for solving this problem on their own. Bottom-up evaluation is an efficient method for generat-
ing tuples but does not store any information related to proof trees. However, top-down evaluation
does compute proof trees as part of its execution, but there are no guarantees for minimality of
height. Additionally, to prove the existence of a particular tuple requires proving the existence of
every intermediate tuple up to the input tuples, and thus the problem of generating only fragments
of proof trees cannot be solved by top-down. Thus, we present a hybrid solution for generating
proof trees, consisting of a provenance evaluation strategy based on bottom-up evaluation, plus a
debugging query mechanism to construct proof trees.

We summarize the system in Figure 8. The Datalog specification and input tuples (EDB) are the
input into the system. The provenance Datalog evaluation generates a set of tuples (IDB) alongside
proof annotations for these tuples. For each tuple, the annotation stores two numbers: one referring
to the rule generating that tuple, and one referring to the height of a minimal height proof tree
for that tuple. Using these annotated tuples as input, the interactive proof tree generator system
allows the user to query for a proof tree fragment for any tuple in the IDB.

The proof tree generator is at the core of the interactive exploration of proofs for tuples. A user
queries for a fragment of a proof tree, e.g., two levels of a proof tree for vpt(b, l1), and the system
returns the corresponding result. This system can answer any number of queries, and the user can
query for any fragment of the proof tree for any tuple. As previously mentioned, this allows the
user to interactively explore the proof for a tuple and find a meaningful explanation for a tuple.

The provenance evaluation strategy resembles a pre-computation step for debugging. The eval-
uation is performed only once, but the IDB with proof annotations can subsequently answer any

debugging query using the same IDB resulting from evaluation. The ability to answer any debug-
ging query without re-evaluation is an advantage over other selective provenance systems [Deutch
et al. 2015; Lee et al. 2017], where the query is given prior to evaluation, which is then instrumented
based on the query, and thus evaluation must be performed for each different query.

3.1 Standard Bottom-Up Evaluation

The basis of our approach is the standard bottom-up evaluation strategy for Datalog specification
[Abiteboul et al. 1995]. The computational domain of standard bottom-up evaluation is the subset
lattice consisting of sets of tuples, denoted instances I . The naïve algorithm for evaluation is based
on the immediate consequence operator, ΓP , which generates new tuples by applying rules in the
Datalog specification to tuples in the current instance,

ΓP (I ) = I ∪ {t | t :- t1, . . . , tn is a valid instantiation of a rule in P with each ti ∈ I }.
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The result of Datalog evaluation is attained when ΓP reaches a fixpoint, i.e., when ΓP (I ) = I . Note
that this evaluation appears closely related to the inductive construction of proof trees and indeed
the set of tuples represented by T i is equal to the set of tuples generated by the ith application of
ΓP .

However, this naïve evaluation will repeat computations, since a tuple computed in some iter-
ation will then be recomputed in every subsequent iteration. Therefore, the standard implemen-
tation of bottom-up evaluation in real systems such as in [Jordan et al. 2016] and [Whaley et al.
2005] is semi-naïve. Semi-naïve evaluation contains two main optimizations over naïve bottom-up
evaluation:

(1) Precedence graph optimization: The Datalog specification is split into strata. First, a
precedence graph of relations is computed, then each strongly connected component of
the precedence graph forms a stratum. Each stratum is evaluated in a bottom-up fashion
as a separate fixpoint computation in order based on the topological order of SCCs. The
input to a particular stratum is the output of the previous strata in the precedence graph.

(2) New knowledge optimization: Within a single stratum, the evaluation is optimized in
each iteration by considering the new tuples generated in the previous iteration. A new
tuple is generated in the current iteration only if it directly depends on tuples generated in
the previous iteration, therefore avoiding the recomputation of tuples already computed
in prior iterations. We describe this process in further detail in Section 4.1.

With these two optimizations, semi-naïve performs less repeated computations than the naïve
algorithm; however, our method for generating proof trees must now be tailored to semi-naïve
evaluation.

Another essential extension of Datalog is negation, and the standard semantics for negated
Datalog is stratified negation [Abiteboul et al. 1995; Greco and Molinaro 2015]. A negated predicate
is denoted with a ! symbol, for example !vpt(Var, Obj) denotes the negation of vpt(Var, Obj).
Semantically, a negated predicate evaluates to true if no matching tuples exist in the instance. With
stratified negation semantics, a negated predicate is only allowed if the contained variables exist in
positive predicates elsewhere in the body of the rule (a condition also known as groundedness) and
if the corresponding relation does not appear in a cycle in the precedence graph. During evaluation,
the stratification of the precedence graph is carried out in a way such that the negated relations
can be treated as input into a stratum, and a negated predicate is treated as a constraint, which
holds if no corresponding tuple exists in the input instance.

3.2 Provenance Evaluation Strategy

These standard bottom-up evaluation semantics are extended to compute a minimal height proof
tree for each tuple. Our extended semantics store proof annotations alongside the original tuples.
In particular, for each tuple, the annotations are the height of the minimal height proof tree, and
a number denoting the rule that generated the tuple. By using this extra information, we can
efficiently generate minimal height proof trees to answer provenance queries (see Section 3.3).

In the context of semi-naïve evaluation, and in particular the precedence graph optimization,
we describe the provenance evaluation strategy here for a single fixpoint computation (i.e., a sin-
gle stratum). The resulting correctness properties translate directly to the evaluation of the full
Datalog specification, since correctness holds for every stratum in the evaluation.

The rule number annotation is easily computed during bottom-up evaluation. With bottom-
up evaluation, a new tuple t is generated if there is a rule ρk : R (X ) :- R1 (X1), . . . ,Rn (Xn ),
ψ (X1, . . . ,Xn ) and a set of tuples t1, . . . , tn such that t :- t1, . . . , tn forms a valid instantiation of
the above rule. If this is the case, then the rule firing of ρk generates t , and thus the identifier
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Fig. 9. Connecting a tuple to a proof tree via a height annotation.

ρ (t ) = k is stored as the rule number annotation for t . In this way, for each tuple, we track which
rule is fired to generate that tuple.

However, the height annotations are more involved and relate closely to the semantics of
bottom-up evaluation. Thus, we must develop a formalism for the height annotations, to ensure
that it correctly computes the height of the minimal height proof tree for each tuple. To formal-
ize tuples with height annotations, we define a provenance lattice as our domain of computation,
which extends the standard subset lattice with proof annotations. An element of the provenance
lattice is a provenance instance.

Definition 3.1 (Provenance Instance). A provenance instance is an instance of tuples I along with
a function

h : I → N

which provides a height annotation of each tuple in the instance. We denote a provenance instance
to be the pair (I ,h).

The aim of these height annotations is to connect a tuple to its proof tree, as depicted in Figure 9.
The middle value is a tuple along with its height annotation, which is an example of an augmented
tuple in a provenance instance. The corresponding proof tree on the right has height matching this
annotation.

Similar to the subset lattice of standard bottom-up evaluation, the domain of provenance eval-
uation should also form a lattice, in our case, based on the subset lattice of standard bottom-up
evaluation, but with elements being provenance instances rather than instances. We denote this to
be the provenance lattice L, where elements are provenance instances. The ordering � of elements
in the lattice is defined by:

(I1,h1) � (I2,h2) ⇐⇒ I1 ⊆ I2 and ∀t ∈ I1 : h1 (t ) ≥ h2 (t ).

Intuitively, this ordering specifies that an augmented instance (I1,h1) is “less than” another aug-
mented instance (I2,h2) if all tuples in I1 also appear in I2, with larger or equal height annotation.
In L, the bottom element is the empty instance, and a join between two instances (I1,h1) and
(I2,h2) is the instance (I1 ∪ I2,h′), where

h′(t ) =
⎧⎪⎪⎨⎪⎪⎩
h1 (t ) if t ∈ I1 \ I2
h2 (t ) if t ∈ I2 \ I1
min(h1 (t ),h2 (t )) if t ∈ I1 ∩ I2

.

Under this definition, moving “up” the lattice toward the top element results in augmented in-
stances with more tuples and smaller height annotations. This property guarantees the minimal-
ity of these height annotations, since a bottom-up Datalog evaluation is equivalent to applying a
monotone function to move “up” a lattice.

The property that � a valid partial order is essential to demonstrate that standard properties of
Datalog evaluation hold.

Lemma 3.2. � is a partial order.
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In a similar fashion to the immediate consequence operator ΓP operating on the subset lattice of
Datalog instances, provenance evaluation is achieved with a consequence operator TP operating
on the provenance lattice. The result of evaluation is reached when TP reaches a fixpoint, i.e., when
TP ((I ,h)) = (I ,h). The main property TP is that once a fixpoint has been reached, the proof tree
height annotations are minimal, and they correspond to the heights of the smallest height proof
trees.

The consequence operator TP is defined in terms of the ΓP operator:

Definition 3.3 (Consequence operator). The consequence operator, TP , generates a new prove-
nance instance:

TP ((I ,h)) = (ΓP (I ),h′),

where h′ is defined as follows. For any tuple t ∈ ΓP (I ), let

Gt = {(t1, . . . , tn ) | t :- t1, . . . , tn is a valid rule instantiation with each ti ∈ ΓP (I )}
be the set of all configurations of rule bodies generating t . Note this may be empty in the case of
EDB tuples. Then,

h′(t ) =

{
h(t ) if Gt = ∅
min(h(t ),minд∈Gt

{maxti ∈д {h(ti )} + 1}) otherwise
.

The generation of new tuples behaves in the same way as ΓP . To illustrate the height annota-
tions, consider the rule instantiation vpt(b, l1) :- (assign(b,a), 0), (vpt(a, l1), 1), with height an-
notations written alongside body tuples for convenience. From this rule instantiation, we would
generate the tuple vpt(b, l1) with height annotation max(0, 1) + 1 = 2. However, the instantiation
vpt(b, l1) :- (load(b, c, f ), 0), (store(c, f ,a), 0), (vpt(a, l1), 1), (alias(c, c ), 2) would also generate
vpt(b, l1), but with height annotation max(0, 0, 1, 2) + 1 = 3. The resulting instance after apply-
ing TP will contain only the smaller annotation, and thus the resulting provenance tuple is
(vpt(b, l1), 2).

Also, note that this semantics allow for the update of the height annotation for a tuple t ∈ I . If
TP (I ,h) = (ΓP (I ),h′) results in h′(t ) < h(t ), then the height annotation of t is updated. An update
may happen if TP generates new tuples that form a valid configuration of a rule body generating
t , with lower height annotations than a previous derivation.

We illustrate this definition of provenance evaluation strategy using the running example. As
before, we denote (t ,h) to be a tuple t with height annotation h. To highlight the importance of
updating height annotations, we introduce a pre-processing step to generate the input instance for
the points-to analysis. For example, a situation may arise in points-to analysis where a subclass
constructer takes a superclass object as a parameter:

a2 = new O2(a);

a3 = new O3(a2);

In this situation, a store (e.g. a.f = b;) may also imply a2.f = b; and a3.f = b;. For the
points-to analysis, a pre-processing step may be required to unroll the store and assign statements
through the class hierarchy:

store(P, F, Q) :- instanceof(P, SuperP), store(SuperP, F, Q).

assign(Var1, Var2) :- instanceof(Var2, SuperVar2), assign(Var1, SuperVar2).

As a result of the recursive pre-processing step, the input instance to the points-to analysis
fixpoint contains tuples with different height annotations. Figure 10 shows the derived vpt re-
lation under the fixpoint computation with the provenance evaluation strategy. Importantly, in
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Fig. 10. IDB relationvpt in each iteration of the fixpoint computation for the example Datalog specification.

iteration 3, the height annotation for vpt(b, l1) is updated as a result of a new derivation us-
ing load(b, c, f ), store(c, f ,a), with lower height annotation than the previous derivation using
assign(b,a). This example demonstrates that the height annotations of tuples may be updated
after they are initially computed, which is essential to ensure minimality.

It remains to be shown that the provenance evaluation strategy is correct, i.e., that TP terminates
and results in the same set of tuples as ΓP . Additionally, we must show that the height annotations
resulting from provenance evaluation strategy is minimal.

Lemma 3.4. TP computes the same tuples as ΓP at fixpoint, i.e.

(1) ∃k s.t. TP (T k
P

((I ,h))) = T k
P

(I ,h), and

(2) T k
P

(I ,h) = (Γk
P

(I ),hk ) for some level annotation function hk

Proof. By definition, TP generates tuples in the same fashion as ΓP . Since ΓP always reaches a
fixpoint, say after l iterations, i.e., ΓP (Γl

P
(I )) = Γl

P
(I ), we have

T l
P ((I ,h)) =

(
Γl

P (I ),hl
)
.

Any further applications of TP do not change the set of tuples, since ΓP has already reached a
fixpoint. Thus, after l iterations, TP computes the same tuples as ΓP .

If there exists a k ≥ l such that TP reaches fixpoint after k iterations, then the theorem is proved.
Consider applying TP to (Γl

P
(I ),hl ). The set of tuples will not change. For any tuple t ∈ Γl

P
(I ), the

height annotation can only decrease as a result of applying TP , since TP takes the minimum height
over all rule configurations generating t and hl (t ) also must result from such a configuration.

The height annotation is bounded from below by 0, since EDB tuples have non-negative anno-
tations, and each subsequently generated tuple has increasing annotation. Therefore, applying TP
monotonically decreases the height annotation of t , which is bounded from below, so eventually,
a fixpoint must be reached. Since this holds for all tuples in Γl

P
(I ), TP must reach a fixpoint after

k ≥ l iterations. �

We have established that the provenance evaluation strategy terminates and computes the same
set of tuples as standard bottom-up evaluation. It remains to be shown that the proof height an-
notations are minimal, i.e., that they reflect the real height of the minimal height proof tree for
each tuple, and also that they correspond to real proof trees. The property of minimal height an-
notations is the major result of this section, since it demonstrates that our method generates proof
trees of minimal height.
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Theorem 3.5. Let T k
P

((I ,h)) = (Γk
P

(I ),hk ) be the resulting instance at fixpoint of TP . Then, for

any arbitrary tuple t ∈ Γk
P

(I ),

(1) there does not exist any sequence of tuples t1, . . . , tn such that t :- t1, . . . , tn is a valid instan-

tiation of a rule in P with each ti ∈ Γk
P

(I ) and h(t ) > max{h(t1), . . . ,h(tn )} + 1, and

(2) there is a valid proof tree for t with height hk (t ).

Proof. The proof for part 1 is by contradiction. Assume such a sequence of tuples t1, . . . , tn
exists. Consider applying TP to the instance.

TP
(
Γk

P (I ),hk
)
=
(
Γk

P (I ),hk+1
)

withhk+1 (t ) = minд∈Gt
{maxti ∈д {hk (ti )} + 1} by definition ofTP . The set of tuples does not change,

since we assume that a fixpoint of ΓP has already been reached.
Since the sequence t1, . . . , tn is a valid rule body configuration generating t , it is an element

of Gt , and therefore is considered when updating the height annotation of t . Since the height

annotation resulting from this sequence is lower than hk (t ), the update will happen, and thus a
fixpoint has not yet been reached.

Thus, we have a contradiction, and so such a sequence producing a lower height annotation
cannot exist.

The proof for part 2 is by induction on the height annotation of t . Let h = hk (t ) for simplicity.
If h = 0, then t is in the EDB. In this case, the proof tree with a single node corresponding to t

is a valid proof tree. Otherwise, for h > 0, assume the hypothesis is true for all tuples with height
annotation less than h. By definition of TP , there exists a sequence t :- t1, . . . , tn such that

h = max(hk (t1), . . . ,hk (tn )) + 1.

By the assumption, there are valid proof trees for each ti of height hk (ti ). We can generate a
proof tree as follows:

where each . . . represents the subtree forming a valid proof tree for each ti . This resulting proof
tree has height

max(hk (t1), . . . ,hk (tn )) + 1,

which equals h. This forms a valid proof tree for t of height hk (t ). �

We have shown the correctness and minimal height annotations of the provenance evaluation
strategy for a single fixpoint computation. To evaluate a stratified Datalog specification in a semi-
naïve fashion, each stratum is evaluated as a separate fixpoint using the provenance evaluation
strategy. The correctness of the evaluation of a full Datalog specification follows from the correct-
ness of each fixpoint evaluation.

3.2.1 Constraints and Negation. A constraint in a Datalog specification appears in the body of a
rule, and takes the formX ◦ Y , whereX andY are variables or constants, and ◦ is a standard binary
relation operator (such as =, <, etc.). Importantly, every variable that appears in a constraint must
be grounded, i.e., they must appear in a positive predicate in the body of that rule. Therefore, when
a rule is instantiated, the variables appearing in constraints can also be instantiated with constants,
and it can be trivially checked whether the constraint holds true. Explaining that a constraint holds
true requires no further expansion in the proof tree, and thus no special consideration must be
taken during Datalog evaluation.
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Fig. 11. Example Datalog specification demonstrating the upper bound is tight. The label on each edge (x ,y)
denotes the height annotation h(edge(x ,y)). Although edge is an input relation for this fixpoint, the height
annotations may be non-zero as a result of some pre-processing stage (see Figure 10 for an example of how
this may occur).

A negation also appears in the body of a rule, and takes the form !R (X ), where R is a relation
name, and X is a sequence of variables or constants. Similarly to a constraint, all variables that ap-
pear in a negation must be grounded and an instantiation of the rule also instantiates the variables
in the negation. Semantically, a negation holds true if the tuple formed by instantiating X does
not exist in the relation R. To explain that a negation holds true requires to enumerate the relation
R, showing that the relevant tuple is not contained. However, this is impractical in the presence
of large relations, and thus our system displays the instantiation of the negation, asserting that
it holds true. Using this approach, no further instrumentation of negations is required during the
Datalog evaluation phase. The user may then choose to explain the non-existence of the tuple,
using Section 3.4.

3.2.2 Complexity of Provenance Evaluation Strategy. In this section, we discuss the complexity
of the provenance evaluation strategy. We characterize this complexity by the number of rule
firings during evaluation. With standard bottom-up evaluation, we say that a rule is fired if it
generates a new tuple. Therefore, for each tuple generated by the Datalog specification, there
is exactly 1 rule firing. However, with the provenance evaluation strategy, a rule is also fired if
it results in an update for the height annotation of a tuple. Therefore, we consider the number of
updates performed during evaluation of the specification as a characterization of the extra amount
of work done by provenance evaluation compared to standard bottom-up evaluation.

Theorem 3.6. An upper bound for the number of updates performed is O (n ×maxh), where maxh
denotes the maximum attained height annotation for any tuple during evaluation and n the number

of tuples generated by the specification.

Proof. To prove this, we need to show two things: (1) that it is a true upper bound and (2) that
it is a tight bound.

To prove (1), consider a tuple t attaining a height annotation of maxh. Its annotation may only
be updated if there is a valid derivation for t with a lower height. In the worst case, in each update,
we reduce the annotation by 1, and thus we must perform maxh updates to t . Considering all
tuples produced by the specification, we may update all tuples in this way in the worst case, and
therefore, we have O (n ×maxh) updates.

To prove (2), we show an example attaining the upper bound, in Figure 11. In this example,
the maximum height annotation is 2k , and the tuple reach(a, e ) will be updated k times as new
derivations are computed using nodes in the bottom chain. Furthermore, each tuple reach(a,x )
corresponding to nodes x in the “leg” must be updated O (k ) times as the tuple reach(a, e ) is
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updated. Since there are k nodes in the leg, each of which is updated O (k ) times, we have in total
O (k2) updates, which coincides with the upper bound. Therefore, this upper bound is tight. �

We also note that maxh cannot exceed n, since in each iteration of TP where a new tuple is
generated, the height annotation of that tuple cannot exceed the maximum height annotation in
the previous iteration, plus 1. If no more tuples are generated, then the height annotation for any
tuple may not increase. Therefore, by generating a new tuple, we increase maxh by at most 1, and
therefore this value is at most the total number of tuples generated.

Therefore, in the worst case, the provenance evaluation strategy may have to do a quadratic
amount of extra work compared to standard bottom-up evaluation. However, as real-world ex-
amples (see Section 5) show, such instances rarely occur, and scalability is maintained in most
real-world cases.

3.3 Proof Tree Construction by Provenance Queries

Given a provenance instance (I ,h) computed by the provenance evaluation strategy, and a tuple
t ∈ I , the aim is to construct one level of a minimal height proof tree for t . We utilize the height
annotations h and rule number annotations that are stored alongside the instance during bottom-
up evaluation. We use a top-down approach for proof tree construction, starting from a query
tuple and recursively finding tuples that form a valid instantiation of a rule generating the query
tuple. Denote h(t ) to be the height annotation, and ρ (t ) to be the rule corresponding with the rule
annotation for t .

The result of this search would be a sequence t1, . . . , tn such that t :- t1, . . . , tn is a valid in-
stantiation of ρ (t ) leading to a minimal height proof tree. A pre-requisite is that the provenance
instance (I ,h) is the result of bottom-up evaluation, and since all possible tuples are computed dur-
ing this evaluation, we know that each t1, . . . , tn exists in I . Thus, this problem would be solved
by searching for tuples in the already computed instance I .

However, we must constrain this search such that the result is part of a proof tree of minimal
height, since there may be multiple valid configurations for the body of ρ (t ), and some configu-
rations may not lead to minimal height proof trees. These constraints result from the annotations
from bottom-up evaluation. From Theorem 3.5, there exists a configuration for the body that leads
to a minimal height annotation for the head, and the height annotation for tuple t is generated as

h(t ) = max(h(t1), . . . ,h(tn )) + 1

by the consequence operator. Therefore, a configuration leading to the minimal height proof tree
is t1, . . . , tn where h(ti ) < h(t ) for each ti . Note that there may be multiple configurations leading
to a proof tree of minimal height, and any of these configurations is a valid result for the problem.

The problem can be phrased as the following goal search. Given a tuple t , and a rule ρ (t ) :
R (X ) :- R1 (X1), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn ) generating t , we want to find tuples t1, . . . , tn ∈ I such
that t :- t1, . . . , tn is a valid instantiation of ρ (t ), with proof annotations of each ti satisfying the
former constraints,

? :- R1 (X1), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn ),matches(t ,X1, . . . ,Xn ),h(R1 (X1)) < h(t ), . . . ,h(Rn (Xn )) < h(t ).

The condition matches(t ,X1, . . . ,Xn ) denotes that for a result t1, . . . , tn , the variable mapping
from eachXi to ti is consistent with the variable mapping fromX to t . This is related to the problem
of unification in Prolog, and in our context is crucial to ensure that the resulting configuration
forms a valid instantiation of ρ.

Example: We illustrate this construction using the running example. The query is for the tuple
alias(a,b). From the initial bottom-up evaluation, the height annotation is h(alias(a,b)) = 4,
and the generating rule is r4 : alias(Var1, Var2) :- vpt(Var1, Obj), vpt(Var2, Obj).
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Fig. 12.

The search is for tuples forming a configuration for the body of r4, vpt(Var1, Obj), vpt(Var2,
Obj) satisfying the constraints

Var1 = a,

Var2 = b,

h(vpt(Var1, Obj)) < 4,

h(vpt(Var2, Obj)) < 4.

In this example, the first two constraints corresponds with matches(t ,X1, . . . ,Xn ), and the last
two constraints enforce the conditions for proof height annotations. Therefore, the goal search is

? :- vpt(Var1, Obj), vpt(Var2, Obj), Var1 � Var2, Var1 = a, Var2 = b,

h(vpt(Var1, Obj)) < 4,h(vpt(Var2, Obj)) < 4.

In this case, we find the tuples vpt(a, l1), vpt(b, l1), which form the next level of the proof tree:

The other constraints and negations in the rule, denoted ψ (X1, . . . ,Xn ) in the goal search, are
handled by finding the variable instantiation for X1, . . . ,Xn , and displaying the instantiated con-
straint/negation as a node in the proof tree. No further proof search is required, as constraints
with constants are trivially shown to be true, and negation is proved by asserting that the tuple
does not appear in the IDB.

To illustrate how negations and constraints are handled, consider the recursive program in Fig-
ure 12 finding all pairs of nodes in a graph with distance at least 2.

The output contains the tuple path2(a,d ), and its proof tree would be

It is important to note that the goal search terminates as soon as the first solution is found,
which is sufficient for generating a minimal height proof tree. This is in contrast with a standard
bottom-up evaluation of a conjunctive query, which finds all possible configurations for the query.

The complexity of the goal search depends highly on the data structures used in the implemen-
tation. We assume fully (B-Tree) indexed nested loop joins. Therefore searching for a tuple for
a rule with an m nested join, requires O (logm n) time. Given a proof tree height of k , we need
O (k logm n) ≡ O (logm n) to traverse a single branch.

3.4 Provenance for Non-Existence of Tuples via User Interaction

The provenance evaluation strategy of the previous section explains the existence of tuples in
relations. However, the non-existence of tuples may also indicate faults in either the input relations
and/or in the rules.
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Therefore, we extend our approach explaining on why a tuple cannot be derived, i.e., if the user
expects a tuple, but it does not appear in the IDB, then the user may wish to investigate why the
tuple is not produced. Alternatively, a user may want to understand why a negated body literal
holds in a rule during the debugging process.

A non-existent tuple is characterized by every proof tree for the tuple failing to be constructed.
The source of failure may be (1) tuples for the construction not being in the EDB/IDB, and/or (2) the
constraints of rules not being satisfied. Given the potentially infinite number of failing proof trees,
we avoid automatic procedures that represent a serious technical challenge and are not guaranteed
to discover a failed proof tree containing the root cause of the fault. In practice, without a formal
description of the root cause of the fault, the provenance system cannot decide which failed proof
tree is most suitable.1

Hence, in our system, we take a pragmatic, semi-automated approach that is inspired by exist-
ing work such as [Lee et al. 2017, 2018]. Our system leverages user domain knowledge and allows
user interactions to incrementally guide the construction of a single failing proof tree. Each user
interaction produces a failing subproof, or one level of the proof tree. This failing proof tree pro-
vides a succinct representation of valuable information for a Datalog user to discover on why an
expected tuple is not being produced by the specification and does not burden the user with too
much unnecessary information.

Formally, we define the problem as follows: given a provenance instance (I ,h) com-
puted by the provenance evaluation strategy, a tuple t � I , and a rule ρ : R (X ) :- R1 (X1), . . . ,
Rn (Xn ),ψ (X1, . . . ,Xn ) with head relation matching t , we aim to find a configuration t1, . . . , tn
for the body of ρ, such that either: (1) at least one ti � I or (2) the constraints ψ (X1, . . . ,Xn ) are
not satisfied. Such a configuration forms a failing subproof, and recursively constructing subproofs
results in a full failed proof tree. Note that it would be impossible to find a configuration where all
tuples ti ∈ I and constraintsψ (X1, . . . ,Xn ) hold, since the prior assumption is that t � I . If such an
instantiation cannot be found, then the tuple t can be generated by the Datalog specification, and
thus t ∈ I .

For showing the non-existence of a tuple, the provenance system supports the Datalog user in
constructing the failing proof tree in stages. The debugging query for non-existence has three user
interaction steps that are repeated until the root cause of the fault is found. The user interaction
steps are as follows:

(1) the user defines a query for the non-existence of a tuple,
(2) the user selects a candidate rule from which the tuple may have been derived,
(3) the user selects candidate variable values of unbound variables in the rule.

The system displays the rule application in the failing proof tree indicating the portions of the
rule that fail (i.e., at least one literal / constraint must fail) and the portions of the rule that hold.

The Datalog user can continue the query with the newly found failing literals guiding the system
to find the root cause of the fault. This process is semi-automated, since the nature of the fault is
known by the Datalog user only.

Example: Consider the example from Figure 1 for which we want to query the non-existence
of the tuple vpt(b, l4). In the first user interaction step, the Datalog user queries for an explanation
for the non-existence of the tuple vpt(b, l4). Then, the Datalog user selects an appropriate rule
such as rule r2.

1Proof annotations such as introduced in the previous section can only describe existent tuples in the IDB. It is impossible

to consider such annotations for tuples that are not produced by the specification.
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The system can then produce a partial instantiation for the body of the rule, where variables
matching the head are replaced by concrete values from t such as,

vpt(b, l4) :- assign(b, Var2), vpt(Var2, l4).

In the last user interaction step, the Datalog user selects instantiations for the remaining free
variables in rule r2. For example, the Datalog user may choose the value d for the free variable
Var2,

vpt(b, l4) :- assign(b,d ), vpt(d, l4).

Given the instantiated rule, the provenance system will evaluate which portions of the subproof
fail and which portions hold. With that information, the Datalog user can continue the exploration
of the failing portions to find the root cause of the fault. A simple colour labelling helps the Datalog
user to indicate which portions fail and hold, respectively.

In the above example, the red color and X denote the non-existence of the tuple assign(b,d )
in the IDB, i.e., a failing portion of the proof tree. The blue color with � indicates that vpt(d, l4)
holds.

In summary, our provenance system constructs a single failed subproof to explain the non-
existence of a tuple. The construction of the failed subproof is guided by the Datalog user to ensure
the answer contains a relevant explanation, given the infinitely many possible failed proof trees.
The semi-automatic proof construction approach supports the Datalog user by highlighting which
portions of the subproof hold and fail, respectively to guide the exploration.

3.5 Alternative Proof Tree Shapes

Our debugging strategy introduces an interactive system to explore fragments of proof trees to
pinpoint faults in the Datalog specification. Therefore, we wish to minimize the number of user
interactions required to find the fault. For this aim, minimal height proof trees are critical for re-
ducing the number of user interactions in the fault investigation phase. The utility of this approach
is backed by several user experiences in industrial-scale applications (see cf. Section 7.1.2 [Subotić
et al. 2018]).

While generating proof trees of minimal height is useful for users, in principle our framework is
more general and can support a variety of metrics that may be beneficial in future applications. In
this section, we outline general properties of proof tree metrics by having the following properties
for function h:

(1) The codomain of h must have a partial ordering �, so that an update mechanism can be
well defined. It is important that the annotation for a tuple can be updated if the same
tuple is generated again with smaller (according to �) annotation. This ensures that the
resulting annotations are always minimal, since tuples will continue being updated with
smaller annotations until a fixpoint with annotations is reached.

(2) The metric must be compositional, i.e., if t is generated by a rule instantiation t :- t1, . . . , tn ,
then h(t ) = f (h(t1), . . . , (tn )). The importance of this property is twofold. First, it ensures
that the values of the annotations can be computed during evaluation of the Datalog speci-
fication, by encoding f as a functor in the transformed Datalog specification. For example,
a rule may be transformed to be R (X , f (h1, . . . ,hn )) :- R1 (X1,h1), . . . ,Rn (Xn ,hn ). to com-
pute the value of the annotation.
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Second, the compositional property is important for the reconstruction of the proof
tree. In the backward search for a body configuration that may produce the head tuple, f
may be encoded as a constraint. For example, a backward search may be

? :- R1 (X1), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn ),matches(t ,X1, . . . ,Xn ),h(t ) = f (h(R1 (X1)), . . . ,h(Rn (Xn ))),

where the last constraint ensures that the tuples found from the search correctly generate
t with matching annotations.

(3) The metric must be monotone, i.e., h(ti ) � h(t ) for all 1 ≤ i ≤ n, and bounded, i.e., there
is a minimum value c such that c � h(t ) for any tuple t . This property ensures that the
provenance evaluation strategy terminates. Monotonicity ensures that with each rule ap-
plication, the annotation converges toward the minimum value c , and once it reaches c ,
then termination must occur.

If a given metric satisfies the above properties, then it can be used instead of proof tree height
in our framework. Examples of such metrics could be the size of proof trees by number of nodes or
a sequence of k proof tree heights describing the smallest k proof trees for each tuple. One could
also combine multiple metrics by a lexicographical ordering, for example producing proof trees of
minimal height with a minimum number of nodes.

Given that our framework can be adapted to various proof tree shapes, the provenance sys-
tem could be adapted for other applications that make use of other metrics. For example, given
a program analysis written in Datalog, the origin of a bug alarm can be explained through its
provenance. Such ideas, such as thin slicing [Sridharan et al. 2007], may also be able to use our
provenance framework as a building block, and we leave this integration to future work.

4 IMPLEMENTATION IN SOUFFLÉ

In this section, we describe the implementation of our provenance system in Soufflé [Jordan et al.
2016]. Soufflé2 is an open-source system that is available under the UPL license and is implemented
in C++. Soufflé is a parallel Datalog engine designed for shared memory, multi-core machines,
synthesizing highly performant parallel C++ code from Datalog specifications.

Our provenance evaluation strategy and proof tree construction system are tightly integrated
into the Soufflé engine.3 Through this tight integration in Souffé, we are able to achieve high
parallel performance for the provenance evaluation and enable a single evaluation phase to answer
multiple debugging queries. In contrast, previous approaches [Deutch et al. 2015; Köhler et al. 2012;
Lee et al. 2017] implement a Datalog re-writing scheme and simply evaluate the re-written Datalog
in an existing engine.

The Soufflé synthesizer performs a series of specialization steps based on Futamura projec-
tions [Futamura 1999], which synthesize a C++ program with the same semantics as the Datalog
specification. The main specialization step is the compilation of Datalog into an intermediate rep-
resentation called Relational Algebra Machine (RAM) that has imperative and relational algebra
elements to perform simple relational algebra operations to compute fixed-points for semi-naïve
evaluation. The RAM representation of a Datalog specification is in turn compiled into C++ code.
The resulting C++ code implements a specialized semi-naïve algorithm for the rules in the Datalog
specification that have similar performance to a hand-written program [Allen et al. 2015; Jordan
et al. 2016]. In the following, we discuss the implementation of semi-naïve evaluation [Abiteboul
et al. 1995] in Soufflé and discuss subsequently how the synthesized semi-naïve evaluation is

2[sou 2017], https://github.com/souffle-lang/souffle.
3Our provenance evaluation strategy is not specific to Soufflé—it can be integrated into any bottom-up evaluation Datalog

engine.
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Fig. 13. Existence check prior to inserting.

replaced by the provenance evaluation strategy. Semi-naïve evaluation avoids re-computations
of tuples by using the fact that new tuples can only be deduced from new tuples in the previous
iteration. This is achieved by creating a new and delta version of each relation. The new and delta

version of a relation store the tuples found in the current iteration and the previous iteration,
respectively. For example, with a rule R0 (X0) :- R1 (X1), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn ), each relation
Rk is transformed to become a set of relations for each iteration i:

Ri
k ,new

i
Rk
,Δi

Rk
,

whereRi
k

stores all the tuples for relationRk that are computed up until iteration i , while Δi
Rk

stores

only the tuples in Rk computed in iteration i , without any tuples computed in previous iterations.
The relation new i

Rk
is an intermediate relation used to compute the Δ relations. The essential opti-

mization, compared to naïve evaluation, is to realize that in iteration i + 1, a new tuple is only gen-
erated if it directly depends on a tuple generated in iteration i . If this condition does not hold, i.e., if
it depends on knowledge generated in prior iterations, then the tuple would also have been gener-
ated in a previous iteration, and thus generating it again would be a redundant computation. Thus,
a tuple is only generated in iteration i + 1 if it depends on a Δi relation. This constraint is enforced
by transforming the original rule to a set of new Datalog rules that perform semi-naïve evaluation:

new i+1
R0

(X0) :- Δi
R1

(X1),R2 (X2), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn )

. . .

new i+1
R0

(X0) :- R1 (X1), . . . ,Δi
Rk

(Xk ), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn )

. . .

new i+1
R0

(X0) :- R1 (X1), . . . ,Rn−1 (Xn−1),Δi
Rn

(Xn ),ψ (X1, . . . ,Xn ).

Thus, new i+1
R0

contains tuples of R0 that depend directly on tuples generated in iteration i . The

relation Δi+1
R0

is computed as

Δi+1
R0
= new i+1

R0
− Ri

0,

where the relations are viewed as sets of tuples and − denotes set minus. Thus, Δi+1
R0

contains

only tuples generated in iteration i , and no tuples generated in previous iterations. The relation
Ri+1

0 denotes all tuples generated in iterations 0, . . . , i + 1, and is computed as the union

Ri+1
0 = Ri

0 ∪ Δi+1
R0
.

With these auxiliary relations, the final result for the relation R0 is the final Ri
0 once a fix-point is

reached, i.e., the result of the Datalog specification has stabilized. Note that Soufflé evaluates the
Δi+1

R
relation by computing the tuples without an explicit set minus operation, since an existence

check determines whether the tuple already exists in Ri relation before it is inserted into Δi+1
R

. For
example, Figure 13 depicts a snippet of a Soufflé RAM program, part of the semi-naïve evaluation
of the rule r2 : vpt(Var, Obj) :- assign(Var, Var2), vpt(Var2, Obj). The join is performed via a
loop nest iterating over tuples of relations efficiently via indexes [Subotić et al. 2018]. Line 2
computes the new tuples to be added to the Δi+1

vpt relation, where the NOT IN operation is an

existence check to ensure the generated tuple does not already exist in the vpt i relation.
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4.1 Implementing Provenance Evaluation Strategy

The main challenge of integrating the provenance evaluation strategy is to allow the synthesis to be
aware of proof annotations. In particular, the semi-naïve evaluation machinery must be replaced
by the provenance evaluation strategy as described in Section 3.2 to handle the proof annota-
tions. Another critical part of this machinery is the synthesis of data structures [Jordan et al. 2019;
Subotić et al. 2018] for relations that are specialized for the operations in the program. The syn-
thesized data structures have to be extended for proof annotations as well, enabling an update
semantics in Datalog for the annotations.

For the provenance evaluation strategy, we need to amend relations by extra attributes to con-
tain the proof annotations. We utilize the synthesis pipeline of Soufflé by introducing two prove-
nance attributes for each relation. The first attribute represents the rule number of the rule that
generated the tuple, and the second attribute represents the proof tree height. These two new
attributes are introduced for each relation at the syntactic level in Soufflé. A predicate R (X ) is
transformed into R (X ,@rule,@height). For the sake of readability in this text, we distinguish be-
tween original and provenance tuples, where an original tuple is a provenance tuple without proof
annotations. We rewrite all logic rules at the syntactic level to take account of the two provenance
attributes constituting the proof annotation for our system, and to compute the value of the an-
notations. The proof annotation instrumentation is performed as follows where a rule

ρk : R (X ) :- R1 (X1), . . . ,Rn (Xn ),ψ (X1, . . . ,Xn )

is transformed into:

ρk : R (X ,k,max(@height1, . . . ,@heightn ) + 1) :-

R1 (X1, _,@height1), . . . ,Rn (Xn , _,@heightn ),ψ (X1, . . . ,Xn ).

The transformed provenance rule computes level and height annotations for a new tuple, according
to the semantics in Section 3.2. Since the rules are known statically, the rule number annotation k
can be assigned a constant value for each rule in the transformed specification. The rule numbers
of the body predicates are ignored by using _ in each body predicate, since they do not influence
the head predicate.

The transformed provenance rule syntactically represents the computation of proof annotations
during rule evaluation. However, the actual execution of provenance rules differs from a standard
semi-naïve evaluation as presented in [Abiteboul et al. 1995]. The reason is the update mechanism:
A newly discovered provenance tuple may overwrite an existing provenance tuple if they are the
same original tuple, but the new tuple has a smaller height annotation.

The provenance evaluation strategy extends the semi-naïve algorithm by updating the rule num-
ber and the height annotation of a tuple (as defined by TP ) if the original tuple already exists and
the newly generated tuple has smaller height annotation. In other words, if a smaller proof tree
could be found in a subsequent iteration for the same tuple, then an update occurs. Otherwise,
if the original tuple does not already exist, the provenance tuple is inserted into the relation as
is. Thus, the rule computing Δi+1

R0
in the semi-naïve evaluation is modified to accommodate the

possibility of updates, i.e.,

Δi+1
R0
=
(
new i+1

R0
− Ri

0

)
∪
{
t ∈ Ri

0 | hi (t ) > hi+1 (t )
}
,

where hi denotes the height annotations in iteration i .
Therefore, with our provenance evaluation strategy, we integrate the possibility of an annota-

tion update into the data structure. During an insertion operation, if the same original tuple is
discovered, with a larger height annotation than the current tuple, then an update occurs. There-
fore, we wish to call the insert operation if either the tuple does not already exist or the existing
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Fig. 14. Provenance version of RAM loop nest.

tuple has the larger proof annotation. A specialized existence check is implemented, implicitly
implementing the semantics of the provenance Δi+1

R
relation. Similarly to the standard existence

check, the special existence check is implemented as part of the data structure that has been spe-
cialized for each relation.

The result is the RAM snippet in Figure 14. The obvious differences compared to Figure 13 are in
lines 3 and 4, where the level annotation is computed within the loop nest, as part of the insertion.
Furthermore, the PROV NOT IN operation in line 3 denotes the special provenance existence check,
which allows the INSERT to proceed if either the tuple does not already exist, or exists with a larger
proof height annotation. Thus, this implements the update semantics discussed above.

However, the specializations in the data structures still remain to be discussed. Soufflé employs
a highly specialized parallel B-Tree data structure [Jordan et al. 2019], with index orderings for the
attributes generated automatically via an optimization problem [Subotić et al. 2018]. The B-Tree
employs a special optimistic read/write lock for each node, allowing high throughput for parallel
insertion. During an insert operation, a thread may obtain a read lease for each node as it checks
whether the tuple to be inserted already exists. If an insertion is required, then it checks if the
lease has changed, and restarts the whole procedure if it has. Otherwise, it upgrades to a write
lease and inserts the tuple into the correct position in the B-Tree. The data structure also takes
advantage of Soufflé’s Datalog evaluation setting, where a single relation is either read from, or
written to, but never at the same time. Therefore, there are no interleaved reads and writes, and
so read operations are not synchronized.

With the proof annotations, we modify these specializations so that they can take into account
the provenance semantics. The important step is the update semantics, and thus we integrate an
update mechanism into the insert operation, without requiring to delete and then re-insert. The
provenance evaluation strategy requires two main modifications to our B-Tree data structure. First,
the existence check for insertion should consider only the original tuple, and ignore annotations.
This ensures that Datalog set semantics are preserved and that no duplicate original tuples can
exist. However, note that we still need to retrieve the full tuple, including its proof annotations.
This is important for the proof tree construction, discussed in the next section. To address this
concern, we use different lexicographical orderings of indices for the insert and retrieve oper-
ations. The insert index order does not include the attributes storing the proof annotations (so
that annotations are not considered when checking existence), while the retrieve index order
does. We also need to ensure that updating an annotation does not change the ordering of tuples
according to the index; otherwise subsequent index supported searches will fail. Therefore, the
retrieve index order requires the annotation attributes to be at the end, as this guarantees that
an update to the annotations does not affect tuple ordering.

Second, we must have a mechanism to update existing tuples to implement the update semantics
in Section 3.2. To achieve this, we modified the insert operation so that it may also update any
existing tuple with a smaller proof annotation. This insertion first requires to check if the origi-
nal tuple exists in the B-Tree. If it does, rather than aborting (as it would with standard Datalog
evaluation), then the insertion then checks the annotation. If the height annotation of the existing
tuple is larger than the tuple to be inserted, then the annotations of the existing annotation are
updated with new values. Note that during an update, a read lease also needs to be validated and
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Fig. 15. Explaining the tuple alias (a,b).

Fig. 16. Explaining the non-existence of the tuple vpt (′′b ′′,′′ l4′′).

upgraded to a write lease. The integration of the update into the insert operation avoids any need
to delete and re-insert tuples, thus improving the efficiency of the provenance evaluation strategy.
These modifications to the B-Tree reflect the desired insertion semantics, and updates are handled
directly in the insert operation. All other retrieval operations for the B-Tree are not modified,
and tuples can be retrieved as normal, including their proof annotations.

4.2 Implementing a Proof Tree Construction User Interface

After the provenance evaluation strategy is completed, the proof tree construction stage is driven
by the user. It is critical that this process is also fully parallelized and highly performant.

The user interface is implemented as a command line, where the user can enter queries to ex-
plain the existence and non-existence of a tuple. For example, the query explain alias("a",
"b") results in the proof tree in Figure 15. Explaining the non-existence of a tuple, i.e., the query
explainnegation vpt("b", "l4"), results in the interaction in Figure 16. The user may also
select the size of proof tree fragments to display, i.e., setdepth 6 instructs the system to construct
six levels of the proof tree in the next query. For each debugging query, the system invokes the
relevant procedure to construct a proof tree fragment.

It is critical that the proof tree construction procedures are highly performant, since the
constructed IDB may be very large, and we may need to search through many tuples to construct
a proof tree fragment. Therefore, the proof tree construction procedures must be tightly inte-
grated into the Soufflé system to enable a high-performance, parallel search. We integrate these
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Fig. 17. Subroutine for example program.

procedures into the Soufflé RAM, utilizing the existing translation from RAM to parallel C++.
Moreover, since the provenance evaluation strategy uses specialized B-Tree data structures, the
proof tree construction can also utilize index supported searches to find relevant tuples.

Recall that the proof tree construction is facilitated by searches for subproofs. Therefore, we
require a specialized framework in the Soufflé RAM to implement a subproof search. We term this
framework a subroutine framework. Each subproof search can be implemented as a subroutine,
thus integrating with the Soufflé RAM.

To explain the existence of a tuple, a subproof search is required to search the body of a rule
for matching body tuples, satisfying the constraint that proof tree height is lower than the current
tuple. This backward search for a single rule is implemented as a subroutine. For example, the
rule r2 : vpt(Var, Obj) :- assign(Var, Var2), vpt(Var2, Obj) is implemented as the subroutine in
Figure 17.

Lines 2–5 represent a search through a database that is already constructed by the initial bottom-
up evaluation, to find tuples that satisfy the constraints required for the construction of a proof
tree fragment. The values of argument(0) and argument(1) are the values in the head tuple, and
argument(2) is the height annotation of the head tuple. Therefore, this subproof search is param-
eterized by the head tuple. The relations of the body atoms, assign and vpt are searched to find
tuples t0 and t1 that match the body of the rule. Importantly, the constraints for the level number
are encoded in lines 3 and 4, ensuring that the resulting tuples have level number annotations
lower than the query tuple. As shown in Section 3.3, being able to apply this operation recursively
allows us to generate the full proof tree.

Similarly, to generate a failed subproof to explain the non-existence of a tuple, the search for
failing and holding parts of a subproof is implemented as a subroutine. Given an instantiated rule
(which is produced via user interaction), a subroutine returns whether each body tuple is in the
IDB and whether each constraint is satisfied.

5 EXPERIMENTS

In this section, we conduct experiments with the provenance evaluation strategy and provenance
queries implemented in Soufflé (see Section 4). The experiments are conducted for large-scale
Datalog specifications. We have the following experimental research claims:

Claim-I: Our provenance evaluation strategy only has a minor impact on the runtime per-
formance and remains scalable for realistic datasets and rulesets.
Claim-II: The provenance queries for exploring proof tree fragments scales to large sizes,
allowing efficient interactive exploration of proof trees.
Claim-III: Minimal height proof trees are very large for realistic benchmarks, substantiat-
ing the need for interactive proof tree exploration.

Our experiments were performed on a computer with an Intel Xeon Gold 6130 CPU and 192 GB
of memory, running Fedora 27. Soufflé executables were generated using GCC 7.3.1.
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Table 1. Statistics for Doop Benchmarks

context-insensitive 1-obj, 1-heap
Benchmark # EDB # IDB # EDB # IDB
antlr 8,319,095 21,832,232 8,319,095 24,145,648
bloat 4,468,277 13,104,020 4,468,277 15,417,516
chart 8,743,770 22,975,742 8,743,729 25,289,200
eclipse 4,389,770 13,076,265 4,389,799 15,389,708
fop 8,769,583 22,970,533 8,769,572 25,283,913
hsqldb 9,007,087 24,561,921 9,007,087 26,875,437
jython 5,203,400 17,158,375 5,203,400 19,471,797
luindex 4,396,394 13,415,336 4,396,394 15,728,788
lusearch 4,396,415 13,415,390 4,396,394 15,728,788
pmd 8,388,202 22,853,676 8,388,202 25,167,134
xalan 8,670,980 23,488,951 8,670,966 25,802,385

5.1 Performance of the Provenance Evaluation Strategy

Doop. For the first set of experiments, we use the Doop [Bravenboer and Smaragdakis
2009] points-to analysis framework. We experiment with Doop’s context-insensitive and 1-object-

sensitive, 1-heap (1-obj, 1-heap) analyses that exhibit different runtime complexities. As inputs for
the points-to analyses, we compute the points-to sets for the DaCapo 2006 Java program bench-
marks. Each analysis contains approx. 300 relations, 850 rules and produces up to approximately
26 million output tuples on the DaCapo benchmarks (see Table 1).

In Table 2, we present the runtime and memory consumption of Soufflé with eight threads,
comparing standard Soufflé with our provenance evaluation strategy with proof annotations. We
use the DaCapo benchmarks with both the context-insensitive and 1-obj, 1-heap analysis. As ex-
pected, Soufflé with proof annotations incurs an overhead during evaluation. This overhead for
the provenance evaluation strategy is typically within a factor of 1.3, which is a small overhead
to pay for being able to generate minimal proof trees for all possible tuples in the IDB. Hence,
we demonstrate the viability of the provenance evaluation strategy for large-scale Datalog speci-
fications, substantiating Claim I. We noticed that the runtime overhead for the context-insensitive
analysis was smaller across all benchmarks than that of the 1-obj-1-heap analysis due to cache lo-
cality that was more prominent for smaller memory footprints. Note that the overhead for memory
consumption is similar to performance overheads, at approximately 1.45×. This overhead results
from the storage of extra proof annotations during evaluation.

In contrast, a naïve direct encoding approach (cf. Chapter 5 in [Zhao 2017]), where each tuple
is annotated with its full subproof (i.e., direct children in the proof tree), resulted in excessive
memory usage (up to 100×) on a simple transitive closure experiment with 2000 tuples, and thus
cannot be deployed for large-scale Datalog specifications such as those found in Doop.

Figure 18(a) and (b) show the total runtime and average memory usage for each of the Doop
DaCapo benchmarks with both Doop (context-insensitive and 1-obj-1-heap) analyses, running
with multiple threads. The figure demonstrates that the provenance evaluation strategy is scalable,
in that the overhead is sustainable with an increasing number of threads. We observe that the
overall runtime decreases for provenance and without provenance until 5 threads, and increased
thereafter. This is caused by the synchronization of Soufflé’s rule evaluation system and is not
specific to provenance. It is interesting to note that the runtime overhead is larger with fewer
threads, being 1.45× for 1 thread while being 1.23× for 16 threads. Again, this is related to the
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Table 2. Runtime and Memory Usage Overheads for Soufflé with and
without Proof Annotations with Eight Threads

Runtime (sec) Memory (MB)
Benchmark No Prov. Prov. (×) No Prov. Prov. (×)
context-insensitive

antlr 9.73 12.29 1.26 595 900 1.51
bloat 9.54 12.25 1.28 596 900 1.51
chart 15.89 19.60 1.23 1,103 1,604 1.45
eclipse 9.64 11.76 1.22 593 898 1.51
fop 15.57 19.48 1.25 1,079 1,579 1.46
hsqldb 16.36 19.73 1.21 1,124 1,642 1.46
jython 11.00 13.62 1.24 731 1,090 1.49
luindex 9.62 12.00 1.25 594 905 1.52
lusearch 9.80 12.23 1.25 593 904 1.52
pmd 15.58 18.90 1.21 1,053 1,542 1.46
xalan 15.59 19.54 1.25 1,091 1,595 1.46
geo-mean 1.24 1.44
1-obj, 1-heap

antlr 10.84 12.60 1.16 936 1,310 1.40
bloat 15.77 22.00 1.40 732 1,082 1.48
chart 21.84 28.13 1.29 1,242 1,788 1.44
eclipse 15.76 21.00 1.33 729 1,080 1.48
fop 22.21 29.63 1.33 1,216 1,756 1.44
hsqldb 23.01 29.43 1.28 1,256 1,823 1.45
jython 17.54 22.96 1.31 868 1,270 1.46
luindex 15.94 21.55 1.35 730 1,086 1.49
lusearch 15.95 21.25 1.33 731 1,087 1.49
pmd 21.58 28.21 1.31 1,190 1,725 1.45
xalan 22.09 28.68 1.30 1,224 1,773 1.45
geo-mean 1.31 1.46

Fig. 18.
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Table 3. Statistics for Ddisasm Benchmarks

Benchmark # EDB # IDB
cactusADM 845,762 12,758,417
calculix 1,934,084 39,101,856
gamess 9,892,299 204,764,756
gcc 3,968,589 133,994,711
GemsFDTD 445,185 16,483,816
gobmk 4,211,765 34,935,275
gromacs 1,122,734 16,238,070
h264ref 638,837 12,991,980
omnetpp 720,581 18,261,432
perlbench 1,330,330 65,875,051
povray 1,160,773 55,857,237
tonto 4,767,218 285,090,829
wrf 4,690,140 97,986,011

underlying hardware architecture providing caches and memory lanes for each core. With more
threads, the memory bandwidth to access the logical relations with proof annotations improves.

The memory usage of the provenance evaluation strategy has a consistent overhead of 1.45×,
which aligns with our expectations that there would be a reasonable overhead associated with
storing the provenance annotations per tuple. Note that this overhead is constant over any number
of threads, since the amount of extra information stored overall does not change with the number
of threads.

Ddisasm. For the second set of experiments, we use the Ddisasm [Flores-Montoya and Schulte
2019] disassembler tool. The Ddisasm tool takes as input an executable binary and produces as
output an assembly version of that binary. The main part of Ddisasm is a Soufflé specification
containing 535 relations and 1,020 Datalog rules. We run Ddisasm with and without provenance
annotations, with eight threads. As a benchmark suite, we use a subset of the SPEC CPU 2006
benchmarks, presenting only those with disassembly runtimes longer than 5 s. Each benchmark
takes between 400 thousand and 9 million tuples as input and produces between 12 and 285 million
tuples as output (see Table 3).

The results in Table 4 demonstrate that the provenance evaluation strategy incurs a runtime and
memory overhead. For Ddisasm, the runtime overhead is on average approximately 1.39×, which
is an acceptable overhead for generating provenance annotations. However, the memory overhead
for Ddisasm is 2.6×, which is considerably higher than for Doop. This is due to extra indices that
were automatically generated to cover operations during the proof tree construction stage. In the
worst case, a single relation, instruction, required three indices for standard Datalog evaluation,
but nine indices for the provenance evaluation strategy. This means that tuples in instruction
are replicated 3× more with provenance, in addition to the overhead of the provenance annota-
tions themselves. Future work optimizing the index generation algorithm in Soufflé will improve
the memory overhead for situations where multiple indices are generated due to the provenance
evaluation operations.

The main outlier in Table 4 is tonto, which exhibits a 2.2× runtime overhead and a 3.37×mem-
ory overhead. This particular benchmark generated 76% of its 285M tuples in the string_part
relation, which had double the indices for the provenance evaluation strategy. As a result of this
data replication, along with an increased cache miss rate (approximately double for the provenance
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Table 4. Runtime and Memory Usage Overheads for Ddisasm on SPEC
Benchmarks with and without Provenance Annotations with Eight Threads

Runtime (sec) Memory (MB)
Benchmark No Prov. Prov. (×) No Prov. Prov. (×)
cactusADM 6.76 9.26 1.37 700 1,974 2.82
calculix 16.21 21.65 1.34 1,868 5,025 2.69
gamess 105.46 127.68 1.21 9,636 26,076 2.71
gcc 99.05 104.86 1.06 5,180 12,160 2.35
GemsFDTD 7.22 9.01 1.25 709 1,760 2.48
gobmk 19.39 35.56 1.83 1,450 3,453 2.38
gromacs 7.43 10.54 1.42 894 2,558 2.86
h264ref 5.54 7.85 1.42 644 1,679 2.61
omnetpp 10.4 13.17 1.27 763 1,952 2.56
perlbench 16.06 21.53 1.34 2,454 5,460 2.22
povray 11.57 15.71 1.36 2,071 4,532 2.19
tonto 340.49 749.63 2.20 24,395 82,152 3.37
wrf 58.28 74.2 1.27 4,739 13,085 2.76
geo-mean 1.39 2.60

evaluation strategy, resulting from worse cache coherence from storing provenance annotations),
the runtime and memory overheads are larger than for other benchmarks.

While the runtime and memory overhead on Ddisasm is higher than on Doop, the result is still
an acceptable price to pay to generate debugging annotations.

Comparison with current approaches. The current state of the art in tracking Datalog provenance
is to instrument the specification with a given provenance query. The instrumented Datalog spec-
ification can then be evaluated using any Datalog engine. One example of this approach is the
top-k approach [Deutch et al. 2015, 2018], where Datalog specifications are instrumented based on
a provenance query taking the form of a derivation tree pattern.

For our experiments, we implemented the instrumentation algorithm presented in Deutch et al.
[2018] and evaluated the resulting Datalog using Soufflé, again using Doop as the test Datalog
specification. Since the instrumentation requires a specific derivation tree pattern, we choose one
that produces any proof tree for a single tuple from the VarPointsTo relation in Doop. The tuple
we choose describes a points-to relationship between two variables in java.lang.Double and
java.lang.Long, which exists in the result for every DaCapo benchmark.

The results in Table 5 showed that during Datalog evaluation time, the difference in both run-
time and memory usage is at most 2%. Note that the results differ from the previous section due to
using an older version of Doop, which was better supported by our top-k implementation. These
results demonstrate that our provenance encoding scheme is at least as scalable as the state-of-the-
art in terms of runtime performance. However, the main difference between the two approaches is
that we are able to answer any provenance query during proof construction time, rather than only
having the single proof tree matching the derivation tree pattern. Hence, our provenance evalu-
ation strategy provides no runtime penalty for Datalog evaluation, while having a considerable
advantage when exploring the provenance.

5.2 Proof Tree Construction

For the construction of proof trees, the performance of the provenance queries is instrumental.
A debugging query constitutes a backward search for a rule (i.e., reverting the computational
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Table 5. Runtime and Memory Usage Overheads for Our Provenance
Approach Compared to Top-k [Deutch et al. 2018] Using Doop with

the DaCapo Benchmarks

Runtime (sec) Memory (MB)
Benchmark Top-k Prov. (×) Top-K Prov. (×)
antlr 19.09 19.02 0.99 1,502 1,502 1.00
bloat 12.46 12.74 1.02 901 902 1.00
chart 19.69 20.12 1.02 1,606 1,605 1.00
eclipse 12.46 12.46 1.00 900 899 1.00
fop 19.73 19.87 1.01 1,579 1,582 1.00
hsqldb 20.47 20.44 1.00 1,647 1,646 1.00
jython 14.11 14.25 1.01 1,092 1,092 1.00
luindex 12.48 12.48 1.00 907 907 1.00
lusearch 12.53 12.47 1.00 905 905 1.00
pmd 19.40 19.42 1.00 1,542 1,543 1.00
xalan 19.63 19.73 1.00 1,596 1,595 1.00
geo-mean 1.01 1.00

Fig. 19. Proof tree construction and statistics.

direction of a rule). The construction of the proof tree is performed level by level. The expansion
of a node in the proof tree represents a single debugging query.

In Figure 19(a), we show the time taken to construct proof tree fragments with heights up to
20. We initiate the proof tree construction for randomly sampled output tuples in the Doop Da-
Capo benchmarks. In the figure, we plot the runtime against the number of nodes in the proof
tree fragment. Even for 20 levels, these proof trees contain over 15,000 nodes. Considering that
full proof trees may have heights over 200, the corresponding full proof trees would be intractable
to compute and understand due to exponential growth. However, this experiment shows that the
construction of proof trees is approximately linear in the size of the tree. Therefore, provenance
queries can be efficiently computed, and the method will scale well for interactive use. The in-
teractive exploration of proof trees is scalable, with each debugging query on average taking less
than 1 ms per node.

5.3 Characteristics of Proof Trees

In the following experiments, we demonstrate the difficulty of proof tree construction for Datalog
specifications at large scale. Figure 19(b) shows the distribution of heights of full proof trees for
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the DaCapo benchmarks. The proof tree heights can be more than 300. While this may not seem
prohibitive, the expected number of nodes in the proof tree is exponential in height. A non-linear
regression performed on the sizes of actual proof trees, suggests that the branching factor of proof
trees is approximately 1.466 for the DaCapo benchmarks. Therefore, since larger proof trees will
have an exponential number of nodes, it is computationally intractable to construct full proof
trees for these large specifications. Besides, there is a usability challenge in generating meaningful
explanations for the existence of a tuple, which is addressed by the interactive exploration of
fragments of a proof tree, with the user exploring only relevant fragments. This is in contrast to a
full proof tree, where a user may have to interpret millions of nodes to find an explanation.

6 RELATED WORK

Debugging for logic programming languages has a long history, with work having been done on al-
gorithmic debugging strategies since the 1980s [Drabent and Nadjm-Tehrani 1989; Shapiro 1983].
These works present a framework for the algorithmic debugging method for Prolog programs,
where a system asks the user questions about the intended model of the program to find buggy
rules. However, they are based on the SLDNF resolution of Prolog that is not truly declarative,
and thus the semantics of Datalog differ. Our method aligns practically with the interactive de-
bugging frameworks presented here but applied to the bottom-up evaluation of Datalog and with
sophisticated and efficient techniques to generate the debugging information.

Debugging and Provenance. Our method also fits into the established frameworks for provenance
in Datalog [Cheney et al. 2009] and debugging for Datalog [Caballero et al. 2008]. The proof trees
generated by our method are analogous to the computation graphs presented in [Caballero et al.
2008] and are equally effective for debugging. They can also be seen as an extension of how-
provenance [Buneman et al. 2001]. Algorithmic debugging [Caballero et al. 2017; Silva 2007] also
use notions of provenance (analogous to a debugging tree in their terminology) as part of their
framework. In this setup, the debugger asks questions of the user, and guides the navigation of a
debugging tree based on answers to these questions. Thin slicing [Sridharan et al. 2007] has similar
ideas of using fragments of a computation graph to answer debugging queries. Our debugging
strategy for Datalog fits into these frameworks and could be used as a basis for more sophisticated
algorithmic debugging strategies. The main contribution of our work is the novel hybrid approach
for generating provenance information.

Provenance in Datalog. Methods for computing provenance in Datalog has been a well-explored
field [Arora et al. 1993; Caballero et al. 2015; Deutch et al. 2014, 2015; Köhler et al. 2012; Lee et al.
2017]; however, with the caveat that all these previous approaches store the full provenance infor-
mation during the evaluation of Datalog. Köhler et al. [2012], for example, stores the whole compu-
tation graph as an auxiliary relation during Datalog evaluation, which may be many times larger
than the IDB itself in large analysis use cases. Approaches such as in [Deutch et al. 2015] and [Lee
et al. 2017] attempt to reduce the impact of provenance storage by only storing information rele-
vant for a particular provenance query, which is given before the instrumentation and evaluation
of Datalog. Thus, in these approaches, the Datalog specification needs to be re-evaluated for each
different provenance query and therefore extends the investigation phase of the debugging cycle.
The closest approach to ours is perhaps [Deutch et al. 2014], where a Boolean circuit representation
for provenance is described, as well as an algorithm for generating such a Boolean circuit during
Datalog evaluation. However, there is no mechanism for exploring an understandable provenance
representation, and no practical implementation of this work. Therefore, our approach is novel by
minimizing the storage overhead of provenance information, allowing interactive exploration of
proof trees, all while providing an effective integration into an existing semi-naïve Datalog engine.
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Other Applications for Datalog Provenance. Debugging Datalog specifications is not the only
use case for provenance, with user-guided approaches [Mangal et al. 2015; Raghothaman et al.
2018; Zhang et al. 2014, 2017] for program analysis also relying on tracking the origins of data. In
[Raghothaman et al. 2018], Zhang et al. [2017], and Mangal et al. [2015], a user may tag certain
static analysis alarms, to increase or decrease their importance in the next analysis cycle. In [Zhang
et al. 2014], the analysis system automatically generates an appropriate abstraction, by iteratively
trying and refining failing abstractions. All these approaches rely on an annotation framework
for Datalog: the user-guided systems require the user to add an annotation representing the im-
portance of an alarm, and the abstraction refinement system requires the system to tag failing
analyses with annotations. In any case, our provenance evaluation strategy would fit well into
these systems, by providing an annotation framework at the Datalog engine level.

Provenance in Other Areas. Outside of Datalog, provenance has also been a focus of the database
community, being useful for understanding the origins of data in large database systems. For in-
stance, Trio [Benjelloun et al. 2006; Widom 2005] and Perm [Glavic and Alonso 2009; Glavic et al.
2013] are two such systems implementing provenance systems for relational databases. These sys-
tems focus on tracking the lineage of data in a database, rather than on debugging a query, and
thus it is essential that the provenance information is stored directly alongside the data. It is im-
portant to note that in the context of databases, Datalog acts as a powerful query language rather
then a specification logic. As a result, the Datalog specifications in these use cases typically consist
of fewer rules [Liang et al. 2009], that do not exhibit complex patterns found in program analy-
sis benchmarks [Bravenboer and Smaragdakis 2009]. Further study has also been undertaken in
querying database provenance, with [Stamatogiannakis et al. 2015] and [Arab et al. 2017] both pre-
senting mechanisms to construct provenance information lazily after the database query is run.
Thus, similarly to our approach, these allow the querying of arbitrary parts of provenance infor-
mation. However, both approaches are applied to database systems, with [Stamatogiannakis et al.
2015] reconstructing provenance information based on tracking file I/O and system calls during
query evaluation and [Arab et al. 2017] based on system logs produced by the database system.
Therefore, with the highly complex recursive nature of real-world Datalog specifications, similar
information may blow up drastically, and experiments of both works only show scalability up to
10,000 tuples. Moreover, these approaches are unsuitable for our setting of in-memory analysis
workloads.

Further use cases of provenance includes the incrementally updating Differential Dataflow
framework [Chothia et al. 2016], where each dataflow operator is augmented to store a reverse
mapping where it maintains the origins of each piece of data. This is analogous to maintaining a
full computation graph, which we have aimed to improve on by using more lightweight prove-
nance annotations.

Datalog Extended with Lattice Elements. The idea of extending Datalog with lattice elements
supporting subsumption is not a new idea [Greco and Zaniolo 1998; Kießling and Güntzer 1994;
Madsen et al. 2016]. In the past, these works have allowed the user to define a lattice ordering for
tuples, providing subsumption as a way for a “better” tuple to replace “worse” ones. Such ideas
allow Datalog to become suitable for greedy algorithms, such as shortest path, which is difficult to
implement efficiently in standard Datalog without enumerating all possible paths. Our provenance
evaluation strategy uses a specialized version of extension with lattice elements (which we call
provenance annotations), designed for constructing minimum height proof trees. Furthermore,
the utilization of the provenance annotations for proof tree construction is a further extension of
the ideas of past work on subsumption.
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7 CONCLUSION

In this article we have presented a novel provenance evaluation strategy for Datalog specifications.
The provenance evaluation strategy extends tuples in the IDB with proof annotations. With the
help of proof annotations, provenance queries can construct minimal proof trees incrementally.
Our method has very small overheads at logic evaluation time in comparison to standard top-
down evaluation or a naïve provenance methods that encode provenance information explicitly.
Hence, our method enables debugging of large-scale logic specifications for the first time. We have
implemented our provenance method in a high performance Datalog engine called Soufflé [Jordan
et al. 2016], and demonstrated its feasibility through the Doop program analysis framework. We
show that the runtime overheads of the provenance evaluation strategy are approximately 1.31×,
and the memory overheads are 1.76×.

Our novel approach for generating provenance information minimizing the runtime overhead
of Datalog evaluation points to a number of exciting directions for future research. First, while
provenance is highly applicable for Datalog debugging, it may also be helpful to explain the results
of a Datalog program. For example, integration into a program analysis framework such as Doop
could help explain the bug alarms that are found, and improve its utility for program analysis users.
Second, techniques from algorithmic debugging could be integrated to further improve the tool
as a Datalog debugger, by asking queries of the user to inject additional domain knowledge when
exploring the proof tree. Last, the utility of the debugger could be further extended by supporting
other modes of failure, such as infinite loops or out of memory errors.
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