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We propose a new approach to synthesize Datalog programs from input-output specifications. Our approach

leverages query provenance to scale the counterexample-guided inductive synthesis (CEGIS) procedure for

program synthesis. In each iteration of the procedure, a SAT solver proposes a candidate Datalog program,

and a Datalog solver evaluates the proposed program to determine whether it meets the desired specification.

Failure to satisfy the specification results in additional constraints to the SAT solver. We propose efficient

algorithms to learn these constraints based on “why” and “why not” provenance information obtained from

the Datalog solver. We have implemented our approach in a tool called ProSynth and present experimental

results that demonstrate significant improvements over the state-of-the-art, including in synthesizing invented

predicates, reducing running times, and in decreasing variance in synthesis performance. On a suite of 40

synthesis tasks from three different domains, ProSynth is able to synthesize the desired program in 10 seconds

on average per task—an order of magnitude faster than baseline approaches—and takes under a second for 28

of them.
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1 INTRODUCTION

The problem of synthesizing logical rules from data has important theoretical and practical impli-
cations in machine learning and program synthesis. Datalog [Abiteboul et al. 1994], a declarative
logic programming language, has emerged as a popular medium for studying this problem due to
its rich expressivity and scalable performance.
A variety of different techniques have been proposed for synthesizing Datalog programs, in-

cluding meta-interpretive learning [Muggleton et al. 2015], reverse entailment [Muggleton 1995],
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version-space search [Si et al. 2018], SMT constraint solving [Albarghouthi et al. 2017], and nu-
merical relaxation [Si et al. 2019]. Despite significant strides, however, all of these approaches are
hindered by poor scalability, high variance in running times, or limited ability to handle expressive
features such as recursion and invented predicates.
At the same time, query provenance [Cheney et al. 2009; Green et al. 2007a] has emerged as a

powerful mechanism to enable a variety of tools that require meta-reasoning over Datalog programs,
including debugging query results [Karvounarakis et al. 2010], counterexample-guided abstraction
refinement (CEGAR) in static analyses [Zhang et al. 2014], and confidence computation in uncertain
and probabilistic databases [Sarma et al. 2008].

The central insight of this paper is that provenance can also play a key role in program synthesis.
We demonstrate this by proposing a provenance-guided approach to synthesize Datalog programs. In
most guess-and-check approaches to program synthesis, such as counterexample-guided inductive
synthesis (CEGIS) [Solar-Lezama et al. 2006], the main challenge lies in identifying the reason for
the failure of a particular candidate solution. Formal models of query provenance form the ideal
template to structure such reasoning about failures.

Our approach follows the CEGIS paradigm: in each iteration, a SAT solver generates a candidate
Datalog program, and a Datalog solver evaluates the generated program to determine whether it
meets the desired input-output specification. In this context, our approach can also be regarded as
an instantiation of the classic DPLL(T ) procedure for automated theorem proving [Nieuwenhuis
et al. 2005], with T being the theory of least fixed points.

A candidate Datalog program can fail to meet the desired specification in one of two ways: either
by producing an undesirable output tuple or by failing to produce a desirable output tuple. Our
approach handles both cases via additional constraints to the SAT solver in the next CEGIS iteration.
Constraints encoding an erroneous derivation of an undesirable output tuple can be obtained
directly via classical models of “why” provenance. However, reflecting on the non-derivation of
a desirable output tuple leads to difficult ontological questions. We propose two new techniques
to address this problem of “why-not” provenance: the first is a version of the delta-debugging
algorithm that significantly strengthens the constraints from a non-derivation failure, and the
second is a notion of co-provenance which identifies necessary constraints before the occurrence
of a non-derivation failure.
In summary, our approach leverages provenance information from the Datalog solver in order

to constrain the SAT solver in each CEGIS iteration. Conceptually, it constitutes a new approach
to boolean function learning, where the target concept is the formula which encodes exactly the
set of solutions to the synthesis problem. In practice, this provenance-guided approach is central
to scaling synthesis and reducing variability in synthesis time—problems that plague existing
approaches due to a large number of non-deterministic choices in the search process.
We have implemented our approach in a tool called ProSynth and demonstrate that it signifi-

cantly improves over existing approaches, including in synthesizing invented predicates, reducing
running times, and in decreasing variances in synthesis performance. In particular, we compare
ProSynth to two state-of-the-art approaches: ALPS [Si et al. 2018], which uses a version-space
search approach, and Difflog [Si et al. 2019], which uses an approach based on numerical relax-
ation. On a suite of 40 synthesis tasks from three different domains—knowledge discovery, program
analysis, and relational queries—ProSynth is able to synthesize the desired program in 10 seconds
on average per task, taking only under a second each for 28 of them. In contrast, ALPS times out
in one hour on six tasks and takes 142 seconds on average for the rest. Likewise, Difflog times
out on three tasks and takes 136 seconds on average for the rest. Finally, compared to Difflog,
ProSynth exhibits much lower variability in running times across 32 runs on each task; and for all
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but three tasks, the maximum running time of ProSynth is lower than the median running time
of Difflog.
We summarize the main contributions of this paper:

• We present a novel approach to synthesize Datalog programs from input-output specifications.
It follows the CEGIS paradigm and leverages efficient off-the-shelf solvers—a SAT solver that
guesses the candidate Datalog program and a Datalog solver that checks whether it meets
the desired specification.

• We develop a general framework to harness provenance information from the Datalog solver
to learn the constraints to the SAT solver in each CEGIS iteration. Our framework constitutes
a new approach to learn boolean functions, and it is central to scaling synthesis and reducing
variability in synthesis time.

• We demonstrate the effectiveness of our approach in a tool called ProSynth on a variety
of synthesis tasks. ProSynth is able to synthesize more programs than state-of-the-art
approaches and runs an order of magnitude faster, often in under a second.

The rest of the paper is organized as follows. Section 2 provides an illustrative overview of our
approach. Section 3 formalizes the Datalog synthesis problem. Section 4 describes our synthesis
framework and proves its correctness. Section 5 presents our empirical evaluation. Section 6 surveys
related work and Section 7 concludes with a note on future directions.

2 MOTIVATING EXAMPLE

In this section, we illustrate the approach underlying ProSynth using an example synthesis
task: computing strongly connected components in a given directed graph. We start with the
specification of the problem, describe the workflow of ProSynth, and highlight the crucial role
played by provenance-guided synthesis.

2.1 Problem Specification

We present the specification for the example task in Figure 1. Notice that this specification follows
the syntax-guided formulation of synthesis problems (SyGuS) [Alur et al. 2013], and consists of two
components: (a) a semantic specification in the form of relational input-output data, which in our
example consists of an input relation edge describing the adjacency relation of the given directed
graph and an output relation scc specifying the strongly connected components in it; and (b) a
syntactic specification in the form of candidate rules, each of which is a Horn clause. We describe a
procedure for generating candidate rules from a given relational schema in Section 3.3. While this
procedure yields 166 candidate rules for the benchmark problem, for the sake of exposition, we
will only consider a subset of 8 of them, denoted r0, r1, . . . , r7 in Figure 1. Each rule is a universally
quantified first-order logical formula. For example, rule r2 states that for every triple of nodes x ,
y, z, whenever the relation inv contains the tuple (x,y) and the relation edge contains the tuple
(y, z), then the relation scc contains the tuple (x, z). An intermediate relation such as inv which is
not specified in either the input or the output of the synthesis specification is called an invented

predicate.
Given the set of input tuples I , the expected set of output tuplesTexp, and the set Pall of candidate

rules, the goal is to efficiently find a subset of those rules, P ⊆ Pall, such that evaluating the
Datalog program denoted by P on input I produces the output Texp. This problem is NP-hard (see
Theorem 3.2), and practical problem instances require a large number of candidate rules as well as
the ability to discover one or more unlabeled predicates such as inv. In our example, ProSynth
synthesizes the following correct program:

r3 : scc(x,y) :- inv(x,y), inv(y, x).
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Input tuples (I ):

edge(1,2), edge(2,3),

edge(3,1), edge(3,4),

edge(3,5), edge(5,6),

edge(6,5)

1 2 3

4

5 6

(a) I .

Output tuples (Texp):

scc(1,1), scc(5,5),

scc(2,2), scc(6,6),

scc(3,3), scc(5,6),

scc(1,2), scc(6,5),

scc(2,3),

scc(3,1),

scc(2,1),

scc(3,2),

scc(1,3)

(b) Texp.

Candidate rules (Pall ):

r0 : scc(x,y) :- edge(x,y).

r1 : inv(x,y) :- edge(x,y).

r2 : inv(x, z) :- inv(x,y), edge(y, z).

r3 : scc(x,y) :- inv(x,y), inv(y, x).

r4 : scc(x,y) :- inv(x,y).

r5 : scc(x,y) :- inv(y, x).

r6 : inv(x,y) :- edge(y, x).

r7 : inv(x, z) :- inv(x,y), edge(z,y).

(c) Pall.

Fig. 1. An example specification for Datalog program synthesis. The desired target program accepts as input

a directed graph (represented by the edge relation) and outputs information about its strongly connected

components (represented by the scc relation). The set of rules in the target program can be any subset of the

candidate rules labeled r0–r7.

r6 : inv(x,y) :- edge(y, x).

r7 : inv(x, z) :- inv(x,y), edge(z,y).

Somewhat unexpectedly, this solution, P1 = {r3, r6, r7}, encodes the intermediate concept of a
reverse path, that is, inv contains tuple (x,y) if and only if there is a path from y to x . Alternatively,
ProSynth could have synthesized the following equivalent program, P2 = {r3, r1, r2}, which relies
on the more conventional intermediate concept of a (forward) path:

r3 : scc(x,y) :- inv(x,y), inv(y, x).

r1 : inv(x,y) :- edge(x,y).

r2 : inv(x, z) :- inv(x,y), edge(y, z).

2.2 Workflow of Our Approach

Wenow describe the solutionworkflow of ProSynth. Recall that the underlying synthesis algorithm
follows the CEGIS paradigm. In Figure 2, we graphically present the interaction between the SAT
solver and the Datalog solver in each CEGIS iteration. The algorithm maintains a boolean formula
φ, which contains boolean variables vr for candidate rules r in Pall. Each satisfying assignment
computed by the SAT solver can be viewed as partitioning the rules into two sets, P+ and P−,
consisting of rules whose corresponding boolean variables are respectively set to true and false by
the SAT solver. We refer to φ as the synthesis constraint, and regard P+ as the candidate program.
Initially, φ is set to true, and the SAT solver can therefore return any subset of the candidate

rules as the candidate program P+. The Datalog solver evaluates this program on the given input I ,
and ProSynth determines whether the produced output Tout = P

+(I ) matches the desired output
Texp. If yes, the process terminates with P+ as the desired program; otherwise, it uses the provenance
information computed by the Datalog solver to strengthen φ (as described below), and the process
is repeated. Note that the tuples t ∈ Tout are controlled indirectly via the rule set P

+. A tuple t exists
in theTout if there exists a derivation tree for t whose rules are contained in P+. Conversely, a tuple
t does not exist in Tout if for all derivations tree some rules are not contained in P+.

WhenTout , Texp, ProSynth computes provenance information for each mislabeled output tuple
t , based on the following two cases, to obtain a boolean formula (¬ψ in the first case and ω in the
second case) that strengthens ϕ:
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SAT Solver

No

!
+
, !

−

Is %&'( = %*+,?

%&'( ≔ !/(1)

Is 3 satisfiable?

output 

program !/

( ∈ (%&'( ∖ %*+,):

why (?

: ≔ prov(!/, ()

3 ≔ 3 ∧ ¬:

3 ≔ 3 ∧ A

Evaluate !/on 1

A ≔ prov(!C, ()

why not (?

Yes

“why”

provenance

“why not”

provenance

Datalog Solver

( ∈ (%*+,∖ %&'():

output

“no solution”

3 ≔ (E'F

Fig. 2. Message sequence chart depicting the interaction between the SAT solver and the Datalog solver in

each CEGIS iteration of ProSynth.

• If t ∈ Tout \Texp, i.e., t is an undesirable tuple that was derived, ProSynth leverages existing
notions of “why” provenance to computeψ . Intuitively,ψ aims to disable certain rules in P+

(i.e., move them to P−) to prevent the derivation of t .
• If t ∈ Texp \Tout, that is, t is a desirable tuple that was not derived, ProSynth introduces new
notions of “why not” provenance to compute ω. Intuitively, ω aims to enable certain rules in
P− (i.e., move them to P+) to force the derivation of t .

As a limiting case, consider the set of all solutions, P+1 , P
+

2 , · · · ⊆ Pall, to the synthesis problem
(I ,Texp, Pall), and the induced boolean formula, φ⋆, whose satisfying assignments correspond exactly
to this space of solutions. One way to conceptualize the evolution of φ is as a process of using
provenance information to produce successively more precise over-approximations of φ⋆. As a
result, if the synthesis constraint φ ever becomes unsatisfiable, no program satisfies the given
specification, and the process terminates without a solution.
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2.3 Provenance-Guided Synthesis

Finally, we illustrate the computation of why and why not provenance in selected iterations of
ProSynth on our running example. In doing so, we elaborate on the computation of theψ and ω
constraints in Figure 2. We focus on the crucial role played by provenance-guided in accelerating
the overall synthesis process. We provide a detailed log of one run of ProSynth on our running
example in Appendix B.

2.3.1 Strengthening φ with Why Provenance. The initial value of the synthesis constraint, φ0 =
true, so that in the first iteration, ProSynth starts out with the candidate program P+ = Pall =

{r0, r1, . . . , r7}. Evaluating this program on the given input relation edge in Figure 1 derives many
undesirable tuples in the output relation scc. For each such tuple, ProSynth determines a subset
of rules in P+ whose simultaneous presence resulted in the derivation of this tuple, with the goal of
suppressing that combination of rules in future iterations. Off-the-shelf Datalog solvers such as
Soufflé [Jordan et al. 2016] come with facilities to efficiently compute these derivation trees, which
we call the “why” provenance.

For example, consider the undesirable tuple scc(6, 1), one of whose derivation trees is depicted
in Figure 3a. ProSynth collects the set of rules used in this tree, {r1, r2, r3, r6, r7}, and updates φ to
suppress this combination of rules in future iterations:

φ1 = φ0 ∧ ¬(v1 ∧v2 ∧v3 ∧v6 ∧v7).

In the second iteration, the SAT solver returns the candidate program {r1, r4, r5, r6}, which is a
valid solution to φ1. However, this program also derives undesirable tuples such as scc(3, 5), one of
whose derivation trees is depicted in Figure 3b. As before, ProSynth collects the set of rules used
in this tree, {r1, r4}, and updates φ:

φ2 = φ1 ∧ ¬(v1 ∧v4).

Notice that ProSynth has evaluated only two candidate programs so far but has eliminated 34 out
of the 28 = 256 possible programs as being unviable (that is, 4 in the first iteration, 32 in the second
iteration, and 2 in both iterations).

2.3.2 Strengtheningφ withWhy Not Provenance. In the fifth iteration, the constraint solver proposes
the candidate program P+ = {r1, r2}, which is consistent with the feedback in iterations 1–4. This
program fails to derive many desirable tuples, including t = scc(3, 1). The constraint solver has
clearly excluded too many rules from P+, and at least one of the rules in P− must necessarily be in
any candidate solution. Therefore, a naive approach is to simply update φ as follows:

φ ′
5 = φ4 ∧ (v0 ∨v3 ∨v4 ∨v5 ∨v6 ∨v7),

While the additional constraint disallows the current candidate program from being generated
in future iterations, it does not perform any generalization, and is consequently very weak. In

particular, of the 256 programs in the search space, it only disallows the 2 |P
+ |
= 4 programs that

are subsets of P+. As we will show in Section 5, in practice, synthesis with this approach is slow to
converge, and requires 8 iterations on average for our example task.

One of the contributions of this paper is in introducing techniques to perform a tighter analysis
of the failure of candidate programs to produce desirable tuples. Conceptually, this corresponds to
growing P+ and shrinking P− while still ensuring that the desirable tuple t fails to be produced.
See Figure 4. As a result, instead of the original constraint,

ω =
∨

r ∈P−

vr ,
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edge(5, 6)

r6(5, 6)

inv(6, 5)

edge(1, 2)

r1(1, 2)

inv(1, 2)edge(3, 5)

r7(3, 5, 6)

inv(6, 3)

edge(2, 3)

r2(1, 2, 3)

inv(1, 3)

.

.

.

.

.

.

inv(6, 1) inv(1, 6)

r3(1, 6)

scc(6, 1)

(a)

edge(3, 5)

r1(3, 5)

inv(3, 5)

r4(3, 5)

scc(3, 5)

(b)

Fig. 3. Derivation trees resulting in the production of scc(6, 1) and scc(3, 5) in the first (Figure 3a) and second

(Figure 3b) iterations of ProSynth in our example synthesis task.

P+ P−Initially:

P+ ′ P−′After strengthening:

Fig. 4. The original candidate program P+ failed to derive some desirable tuple t , and we subsequently added

candidate rules to P+ while still preserving the non-production of t . As a result, the set P− of excluded rules

shrinks to a smaller set P−′, thus strengthening the associated why-not constraint.

we obtain the stronger constraint,

ω ′
=

∨

r ∈P−′

vr ,

for some (hopefully much smaller) subset, P−′ ⊆ P−.
Our insight is to view the set of excluded rules, P− as a “program”, and the failure to produce t as

a “bug”. We then use the delta-debugging algorithm [Zeller 1999] to derive a minimal subprogram,
Pmin ⊆ P−, which also exhibits this bug, i.e., t < P+ ′(I ), where P+ ′ = Pall \ Pmin. For the tuple
scc(3, 1), by applying this procedure, we obtain Pmin = {r0, r3, r4, r5}, and we therefore update φ as
follows:

φ5 = φ4 ∧ (v0 ∨v3 ∨v4 ∨v5).

Recall that the naive failure analysis only eliminated 2 |P
− |
= 4 candidate programs. In contrast,

minimizing the size P− to Pmin eliminates 2 |Pall\Pmin | = 28−4 = 16 candidate programs from consider-
ation. In practice, using the strong why-not explanations instead of the naive approach enables
ProSynth to converge in just 5 iterations on average.
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We could do even better by introducing other forms of why not provenance. We describe one such
notion that we call co-provenance. While why-not explanations serve to explain the non-derivation
of a desirable tuple after the fact, co-provenance serves to proactively determine combinations of
rules necessary to avoid it from happening in the first place. For example, in the fourth iteration,
the constraint solver proposes P+ = {r1, r2, r5, r6}, which we recall below:

r1 : inv(x,y) :- edge(x,y).

r2 : inv(x, z) :- inv(x,y), edge(y, z).

r5 : scc(x,y) :- inv(y, x).

r6 : inv(x,y) :- edge(y, x).

This program is clearly incorrect, because it produces several undesirable tuples, as we observe
in Appendix B. However, it does produce the desired output tuple t = scc(3, 1). Note however,
that in this context, every derivation tree producing t contains an occurence of the rule r5. This
observation allows us to conclude, without any further evaluation, that the candidate program
P+ \ {r5} = {r1, r2, r6} will not produce t . In other words, if all currently negative rules, P− =
{r0, r3, r4, r7} continue to be excluded, then r5 must continue to be included, and we could update φ
with the following co-provenance constraint:

φ ′
4 = φ3 ∧ ((¬v0 ∧ ¬v3 ∧ ¬v4 ∧ ¬v7) =⇒ v5),

which would subsequently prevent the failure to derive scc(3, 1) in the fifth iteration.
In our experiments, the scc benchmark contains 166 candidate rules. ProSynth finds the desired

program in 16 seconds, invoking the SAT solver 81 times and the Datalog solver 844 times. In
contrast, a version-space search based system, ALPS [Si et al. 2018], takes 56 seconds and invokes
the Datalog solver 47,527 times, reflecting modest ability to generalize from failures. Likewise,
a numerical relaxation based system Difflog [Si et al. 2019] takes 47 minutes and invokes the
Datalog solver 4,008 times—each invocation of the solver is significantly more expensive because
the same set of 166 rules is run in each iteration with different rule weights.

3 THE DATALOG SYNTHESIS PROBLEM

In this section, we formalize the Datalog synthesis problem. We start by briefly reviewing the
main ideas underlying Datalog, as presented in [Abiteboul et al. 1994], formulate the rule selection
problem, and survey some elementary hardness results.

3.1 Overview of Datalog

We first fix a finite set of input relation names I and a finite set of output relation names O. Each
relation R ∈ I ∪O is a set of tuples of the form R(c1, c2, . . . , ck ) of appropriate arity. In the example
synthesis task in Section 2, I = {edge} and O = {inv, scc}.
Then, we explicitly list the set of tuples I , which populate the input relations, and implicitly

define output relations using a finite set of rules. Each rule r is a Horn clause of the form:

Rh(vh) :- R1(v1),R2(v2), . . . ,Rk (vk ),

where the arguments, vh ,v1,v2, . . . ,vk , are vectors of variables of appropriate arity. An example
is the rule for transitive closure: path(x, z) :- path(x,y), edge(y, z). The literal to the left of the “:-”
operator, Rh(vh), is called the head, and always references an output relation, while the literals on
the right hand side, R1(v1), R2(v2), . . . , Rk (vk ), form the rule body.
Each rule is read from right-to-left as a universally quantified implication: “For all variable

valuationsv , if each of the tuples R1(v1), R2(v2), . . . , and Rk (vk ) is derivable, then so is Rh(vh) ”. A
Datalog program is a finite set of rules P = {r1, r2, . . . , rn}. Multiple equivalent formalizations have

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 62. Publication date: January 2020.



Provenance-Guided Synthesis of Datalog Programs 62:9

edge(1, 2)

r1(1, 2)

inv(1, 2) edge(2, 3)

r2(1, 2, 3)

inv(1, 3)

edge(3, 1)

r1(3, 1)

inv(3, 1)

r3(1, 3)

scc(1, 3)

Fig. 5. A portion of the derivation graph of the output tuple scc(1, 3), obtained by applying the rules r1, r2 and

r3 to the input graph of Figure 1. The nodes corresponding to rule instances, such as r2(1, 2, 3), also present

the values with which the variables were instantiated. With this particular choice of rules, the invented

predicate inv represents the familiar notion of reachability in a graph: inv(x,y) is derivable iff the vertex y is

reachable from the vertex x .

been proposed for their semantics: informally, one starts with the input tuples I , and repeatedly
instantiates the variables of each rule to derive new output tuples, until no further conclusions
can be reached. At fixpoint, we obtain a derivation graph containing the input and output tuples,
and the rule instantiations which connect them, such as that shown in Figure 5. We will write
Tout = P(I ) for the set of output tuples produced by a Datalog program operating on a set of input
tuples I . There is a large body of research on efficiently evaluating Datalog programs and several
high-quality commercial and open-source Datalog solvers are available [Aref et al. 2015; Jordan
et al. 2016; Whaley and Lam 2004].

3.2 Synthesis as Rule Selection

In this paper, we follow the popular syntax-guided approach to synthesizing Datalog programs.
There are two principal ingredients of a syntax-guided synthesis (SyGuS) problem [Alur et al. 2013]:
(a) an input-output specification which constrains the behavior of the target program, and (b) a
grammar which specifies the syntactic shape of the target program.
As usual, the user provides a set of input tuples I . In the case of the output, for the sake

of generality, we slightly depart from the example of Section 2, and instead of a single output
specificationTexp, use two parameter setsT +exp andT

−
exp, corresponding to an explicit, non-exhaustive

labelling of desired and undesired output tuples respectively. The goal of the synthesizer is to find
a Datalog program P which transforms I into a set of output tuples P(I ) such that: (a) all desirable
tuples are successfully produced, i.e., T +exp ⊆ P(I ), and (b) no undesirable tuple is produced, i.e.,

T −
exp ∩ P(I ) = ∅.

We emphasize that the labeling of output tuples into T +exp and T
−
exp need not be exhaustive: the

user may choose to identify as many or as few output tuples as they desire. A prominent setting
in which this flexibility is important is in the case of invented predicates, such as the relation
inv of Section 2, where none of the tuples of the particular output relation are labeled. However,
this under-constrained nature of the problem specification also greatly increases the difficulty of
program synthesis, as it is now not possible to consider an individual rule and determine whether
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it is the cause of undesirable behavior in the candidate program. The proof of Theorem 3.2 in [Si
et al. 2019] crucially exploits this observation.

The second component of syntax-guided synthesis is a grammar which constrains the possible
target programs. Various forms of syntax guidance have been previously used in the literature on
inductive logic programming, for example as metarules [Muggleton et al. 2015; Si et al. 2018] and
as restrictions on the numbers and forms of possible solution rules [Quinlan and Cameron-Jones
1995; Zeng et al. 2014]. In this context, syntax guidance may be viewed as a form of inductive
bias [Kitzelmann 2010], both to enable efficient convergence to the target program, and to prevent
overfitting. In this paper, we follow [Si et al. 2019] in uniformly capturing all these forms of syntactic
bias in the form of rule selection: we assume that the user provides a large soup of candidate rules,
Pall, and the goal of the synthesizer is to find a concrete Datalog program P ⊆ Pall with the desired
input-output behavior.
In summary, the central technical problem of this paper is the following:

Problem 3.1 (Rule Selection). Given finite sets of input tuples I , desirable output tuplesT +exp, undesir-

able output tuplesT −
exp, and candidate rules Pall, find a Datalog program P ⊆ Pall, such thatT

+

exp ⊆ P(I )

and T −
exp ∩ P(I ) = ∅.

The key to solving the rule selection problem is to identify rules which cause undesirable behavior.
Unfortunately, the correctness of an individual candidate rule r ∈ P ⊆ Pall is determined not just
by r but also by the other rules r ′ present in the candidate program P . We have seen an example
of this behavior in the example of Section 2, where both P = {r1, r2, r3} and P

′
= {r3, r6, r7} are

valid solutions, but P ∪ P ′ is not a valid solution. The following hardness result follows from a
straightforward encoding of the satisfiability of a 3-CNF formula:

Theorem 3.2 ([Si et al. 2019]). Deciding whether an instance of the rule selection problem,

(I ,T +exp,T
−
exp, Pall), admits a solution is NP-hard.

3.3 Generating Candidate Rules

While the ProSynth framework is agnostic of the choice of candidate rules Pall, in our experiments
in Section 5, we consider two approaches to generate Pall, which we will now describe.

Generating candidate rules by augmentation. A common approach to generating candidate rules
is by instantiating meta-rules [Muggleton et al. 2015]. A meta-rule is a higher-order rule containing
named holes in place of the concrete relation names found in a traditional Datalog rule. The
following expression is an example of a meta-rule:

P0(x, z) :- P1(x,y), P2(y, z). (1)

Here P0, P1 and P2 are higher-order named holes, also calledmeta-variables, and can be consistently
replaced with concrete relation names such as edge, inv or scc to obtain traditional (first-order)
rules. Instantiating the meta-rule in this example will yield a large set of candidate rules, including
“inv(x, z) :- edge(x,y), edge(y, z)”, “scc(x, z) :- scc(x,y), inv(y, z)”, etc.

[Muggleton et al. 2015] require the user to explicitly provide these meta-rules. In contrast, [Si et al.
2018] proposed a technique named augmentation to automatically generate these meta-rules: they
noticed that certain patterns, such as the variable chain in meta-rule (1) are common in a variety
of Datalog programs. The idea is to begin with a small set of manually curated meta-rules, and
repeatedly apply edits to the existing meta-rules to generate new meta-rules. Possible edits include
inserting, deleting, or renaming a variable from a literal, and changing the names of meta-variables.
Thus, for example, meta-rule (1) may be modified to obtain:

P0(x, z) :- P1(x,y), P2(y,y), and
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P0(x,y, z) :- P1(x,y), P2(y, z).

We remark that, in the context of the SCC synthesis example of Section 2, the second meta-rule
above cannot generate any candidate rules because there are no relations of arity 3. Notice, however,
that one can generate any candidate Datalog rule of a given width with a sufficiently large number
of augmentation steps. In their experiments, [Si et al. 2018] observed that by augmenting the
chain meta-rules to a depth of 5, and by then exhaustively instantiating them, they were able to
generate most candidate rules in their benchmark set. In our experiments, we reuse the same set of
meta-rules from their publicly available artifact.

Generating candidate rules by enumerating literals. A second way to generate candidate rules is
by enumerating all sequences of literals of a given width. Let k be the maximum chosen size of
the rule body. The idea is to enumerate, for each output relation, all clauses of width less than or
equal to k , and with all possible combinations of variable assignments. We then perform a sequence
of normalization passes, to eliminate ill-formed and duplicate rules: we ensure that the types of
variable arguments match the relation schemas and normalize variable names to identify equivalent
rules. This mechanism is a convenient way to generate large numbers of candidate rules, and we
use it (with k = 3) in our experiments in Section 5.4 to study the scalability of ProSynth with
respect to varying sizes of Pall.

4 PROVENANCE-GUIDED SYNTHESIS FRAMEWORK

Algorithm 1 formalizes the interaction process described in Figure 2. Starting with φ ≔ true,
the algorithm iteratively strengthens the synthesis constraint to disallow non-solutions. In each
iteration, it first finds a satisfying assignment of the formula φ by querying a SAT solver. This
determines the candidate program P+, such that a rule r is in P+ iff the variable vr is set to true
in the satisfying assignment returned by the SAT solver (step 2a). A Datalog solver evaluates
the candidate program P+ for the given set of input tuples I to obtain the set of output tuples
Tout = P

+(I ) (step 2b). This outputTout of the candidate program P+ may or may not conform to the
output specification (T +exp,T

−
exp). If it satisfies the output specification (step 2c), then the algorithm

returns the candidate program P+ as a valid solution to the synthesis problem. Otherwise, the
iteration analyzes the reasons for the failure of the candidate program and strengthens the synthesis
constraint φ. As discussed in Section 2, this failure analysis has three steps:

(1) t ∈ T −
exp∩Tout is an undesirable tuple for which we expandφ with awhy provenance constraint

(step 2d),
(2) t ∈ T +exp \ Tout is an unproduced desirable tuple for which we expand φ with a why not

provenance constraint (step 2e),
(3) t ∈ T +exp ∩Tout is a produced desirable for which we expand φ with a co-provenance constraint

(step 2f).

If, at any point, the synthesis constraint φ becomes undecidable, then the algorithm concludes that
the problem does not admit any solutions and terminates (steps 2 and 3).
We note that the overall approach is a synthesis framework based on provenance rather than

a single monolithic algorithm, and enables many different optimizations and diverse notions of
provenance. In particular, step 2f is optional, and the why not provenance of step 2e may be
optionally strengthened using the delta-debugging procedure of Section 4.2.2.

Throughout the ensuing discussion, we will freely conflate assignments to the boolean variables,
M , and candidate programs P+. To emphasize the construction of one object from the other, we
will occasionally writeMP+ and P

+

M
: Given a boolean assignmentM , the corresponding candidate

program P+
M
may be computed using Equation 2 of Algorithm 1. The construction in the reverse
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Algorithm 1 ProSynth(I ,T +exp,T
−
exp, Pall). Given an instance of the rule selection problem, returns

a satisfying solution P ⊆ Pall, or none if no solution exists.

(1) Associate each rule r ∈ Pall with a Boolean variable vr . The synthesis constraint φ ranges
over these variables. Initialize φ ≔ true.

(2) Repeat until φ is no longer satisfiable:
(a) LetM be the satisfying assignment returned by the SAT solver. Define rulesets

P+ = {r ∈ Pall | M(vr ) = true}, and (2)

P− = {r ∈ Pall | M(vr ) = false}. (3)

(b) Compute Tout = P
+(I ).

(c) If T +exp ⊆ Tout andT
−
exp ∩Tout = ∅, then return P+.

(d) For every produced undesirable tuple t ∈ T −
exp ∩Tout: computeψ = prov(t, P+), and update

the synthesis constraint: φ ≔ φ ∧ ¬ψ .
(e) For every unproduced desirable tuple t ∈ T +exp \Tout: compute ω = prov(t, P−), and update

the synthesis constraint: φ ≔ φ ∧ ω.
(f) (Optionally) For every produced desirable tuple t ∈ T +exp∩Tout: compute σ = keep(t, P+, P−),

and update the synthesis constraint: φ ≔ φ ∧ σ .
(3) Return none.

direction is also straightforward:

MP+ (vr ) = true iff r ∈ P+. (4)

In the rest of this section, we elaborate on Algorithm 1 by describing the computation of the
prov(t, P+), prov(t, P−), and keep(t, P+, P−) constraints. We begin by establishing its correctness.

Theorem 4.1. Given an instance of the rule selection problem, Q = (I ,T +exp,T
−
exp, Pall), Algorithm 1

returns a valid solution P ⊆ Pall iff the problem admits a solution and returns none otherwise.

Proof. First, notice that the algorithm only returns a solution P in step 2c. Here, it is clearly the
case that P ⊆ Pall and that it is a valid solution to the problem instance Q .
In Lemmas 4.2, 4.3, 4.4, and 4.5, we show that any solution Pv to the rule selection problem Q

also satisfies the why, why-not, and co-provenance constraints, ¬ψ , ω, and σ . From this, we may
establish the invariant that each solution Pv to the rule selection problem is also always a satisfying
assignment to the synthesis constraint φ. It subsequently follows that if ProSynth returns none,
the problem is unsatisfiable.
Finally, let φk be the value of the synthesis constraint after k iterations of the loop, and letMk

be the satisfying assignment to φk chosen by the SAT solver. Notice that ifMk does not identify a
solution to the synthesis problemQ , then at least one of the steps 2d or 2e triggers, so thatMk is no
longer a satisfying assignment to the subsequent synthesis constraint φk+1. Therefore, the number
of satisfying assignments to φ strictly decreases in each loop iteration, so that the algorithm is
guaranteed to eventually terminate. This completes the proof. �

The above theorem relies on the invariant that all solutions of the rule selection problem Q

are always satisfying assignments to varphi. Notice that the algorithm also permits fortunate
termination: i.e., even if φ is satisfied by non-solutions, the SAT solver may non-deterministically
select a satisfying assignment which solves the problem.
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4.1 Why-Provenance: Blocking of Undesirable Tuples

A candidate program P+ ⊆ Pall may erroneously derive some undesirable tuples t ∈ T −
exp in its

output set Tout. As examples, recall the first two example iterations in Section 2, where the tuples
scc(6, 1) and scc(3, 5) were produced. Also, recall that each tuple produced by a Datalog program
is associated with a derivation tree, of which we presented examples in Figures 3a, 3b and 5.
In particular, notice that the derivation tree for scc(6, 1) contains exactly the set of rules

{r1, r2, r3, r6, r7}. Therefore, any candidate program P+ such that {r1, r2, r3, r6, r7} ⊆ P+ will continue
to derive tuple scc(6, 1). Similarly, since the derivation tree for scc(3, 5) contains occurrences of
the rules {r1, r4}, any candidate program P+ such that P+ ⊆ {r1, r4} will also derive scc(3, 5). Since
neither of these tuples is desirable, we add the constraints ¬(v1 ∧v2 ∧v3 ∧v6 ∧v7) and ¬(v1 ∧v4)
to φ1 and φ2 respectively to block these derivations.
When queried with an output tuple t and a set of rules P+, the Datalog solver constructs a

derivation tree τ which produces t and emits the set of rules which appear in τ . We refer to this as
prov(t, P+). Note that t may be the result of multiple (and possibly even infinitely many) distinct
derivation trees. Therefore, prov(t, P+) is not uniquely defined but is rather the result of a non-
deterministic computation. By abuse of notation, by prov(t, P+), we will also refer to the conjunction
of all rule variables appearing in the set, so that prov(scc(6, 1), Pall) = v1 ∧v2 ∧v3 ∧v6 ∧v7. The
following lemma formalizes our intuition:

Lemma 4.2. For each pair of candidate programs P, P ′ ⊆ Pall, and for each tuple t ∈ P(I ), if P ′

satisfies prov(t, P), then t ∈ P ′(I ).

Provenance instrumentation is available in the Soufflé Datalog solver [Zhao et al. 2019]. To
compute the provenance of a tuple, Soufflé generates proof trees using a lazy two-phase approach.
During the evaluation phase of a Datalog program, Soufflé stores two proof annotations for each
tuple, corresponding to the rule which generates that tuple, and the minimum height of its proof
trees. In the second phase, provenance may be queried, and Soufflé reconstructs the proof tree of
smallest height using the proof annotations as constraints while searching the database of computed
tuples. This lazy evaluation approach minimizes the overhead required for Datalog evaluation,
while also maintaining an efficient provenance query mechanism.

4.2 Why-Not Provenance: Enabling the Production of Desirable Tuples

Standard models of provenance capture precisely the reasons for the production of a particular
undesirable tuple. On the other hand, candidate programs might also not derive some desirable
output tuples, in which case the synthesis constraint again needs to be strengthened to disallow such
programs. Note that the lack of existing derivation treesmakes this a fundamentally difficult problem.
We introduce two versions of the why not constraint prov(t, P−). The first form, prov

S
(t, P−), is

a naive constraint which only takes all missing rules in P− into account. The second version
prov

∆
(t, P−) performs a more elaborate reasoning process that significantly generalizes from the

present failure.

4.2.1 Naive Approach, prov
S
(t, P−). Recall the fifth iteration of our example problem in Section 2.

In this situation, P+ = {r1, r2}, so that P− = {r0, r3, r4, r5, r6, r7}. The candidate program P+ did not
derive the tuple t = scc(3, 1). Clearly, the constraint solver has excluded too many rules from P+,
and omitting these rules resulted in the failure to derive t . In particular, any viable solution must
contain at least one of the rules from P−, so a naive approach to block this failure in future is to
assert the constraint ω = v0 ∨v3 ∨v4 ∨v5 ∨v6 ∨v7.
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More generally, if t ∈ T +exp \ P
+(I ) is a desirable-but-unproduced tuple, and P− = Pall \ P

+, then
any candidate solution must satisfy the following constraint:

prov
S
(t, P−) =

∨

r ∈P−

vr . (5)

We can then show that:

Lemma 4.3. Pick an arbitrary pair of candidate programs, P, P ′ ⊆ Pall, and a tuple t < P(I ). Let

P− = Pall \ P . If P
′ does not satisfy prov

S
(t, P−), then t < P ′(I ).

On the other hand, observe that we have not performed any generalization: prov(t, P−) only

excludes 2 |P
+ | programs from consideration, i.e., the current candidate program and all its subsets.

Unsurprisingly, this approach does not scale well to large benchmarks, and exhibits a large variance
in our experiments in Section 5.

4.2.2 Failure Analysis Using Delta Debugging, prov
∆
(t, P−). One technical insight of this paper is

that techniques from automatic program debugging can be used to strengthen why-not constraints.
The idea is to view the set of excluded rules P− as a program, and the non-production of t as a
bug. We can then use the algorithm for delta debugging [Zeller 1999] to shrink P− to a smaller set
which still fails to produce t . The resulting constraint, prov

∆
(t, P−), is therefore shorter than |P− |

and generalizes to eliminate many other candidate programs. We formally describe this procedure
in Algorithm 2.
The algorithm partitions the set P− into approximately equal-sized subsets (step 3a). For each

subset ∆i , the algorithm checks if either ∆i (step 3c) or its complement, ∇i (step 3d) is buggy. In
either of these cases, we focus on the smaller program whose bugginess we have just witnessed.
Otherwise, the algorithm proceeds to decompose P− into smaller partitions, ultimately finding a
minimal buggy subset.

Algorithm 2 prov
∆
(t, P−). Given an unproduced set of tuples t , and a set of excluded rules of P−,

produces a smaller set of excluded rules which still fails to derive t .

(1) Let d be an integer variable denoting the number of partitions into which P− is split. Initialize
d ≔ 2.

(2) For a set of rules P ′ ⊆ P−, say that it is buggy if (Pall \ P
′) fails to derive t .

(3) While d ≤ |P− |:
(a) Partition P− into d subsets, ∆1, ∆2, . . . , ∆d of roughly equal size.
(b) For each i , define ∇i = P

− \ ∆i .
(c) If there exists i such that ∆i is buggy, update P

−
≔ ∆i and d ≔ 2.

(d) Otherwise, if there exists i such that ∇i is buggy, then update P− ≔ ∇i and d ≔ d − 1.
(e) Otherwise, update d ≔ 2d .

(4) Return P−.

The following result follows along the same lines as [Zeller 1999].

Lemma 4.4. Let P+ ⊆ Pall fail to derive some tuple t , let P− = Pall \ P
+ be the set of excluded rules,

and let P−
∆
= prov

∆
(t, P−) be the strengthened why-not constraint. Then:

(1) P−
∆
⊆ P−, and

(2) P+
∆
= Pall \ P

−
∆
also fails to derive t , and

(3) for each rule r ∈ P−
∆
, P+

∆
∪ {r } will derive t .
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The final constraint in the above theorem indicates 1-minimality, i.e., the idea that removing any
individual rule from P−

∆
will allow the resulting program to derive t , and thus make the constraint

too strong to be valid.
Once again, recall the fifth iteration of our example in Section 2, where we had an unproduced

desirable tuple t = scc(3, 1). The complement of the candidate program is P− = {r0, r3, r4, r5, r6, r7}.
Using the delta-debugging procedure, we repeatedly test subsets of P− to ultimately discover that
the subset Pmin = {r0, r3, r4, r5} also exhibits the “bug” of not deriving t . Note that this is to be
expected: the remaining rules,

r1 : inv(x,y) :- edge(x,y).

r2 : inv(x, z) :- inv(x,y), edge(y, z).

r6 : inv(x,y) :- edge(y, x).

r7 : inv(x, z) :- inv(x,y), edge(z,y).

only derive elements of the invented predicate, and the candidate program cannot possibly be correct
if there is no rule that produces tuples which inhabit the scc relation. Hence, for t = scc(3, 1), the
why not provenance constraint, prov

∆
(t, P−) = v0 ∨ v3 ∨ v4 ∨ v5. As we discussed in Section 2,

while the naive constraint prov
S
(t, P−) eliminates 2 |P

+ |
= 4 candidate programs, the strengthened

form, prov
∆
(t, P−) eliminates 2 |Pall\Pmin | = 16 candidate programs from consideration.

4.3 Co-Provenance: Keeping Produced Desirable Tuples

Consider the fourth iteration of the algorithm in Section 2. In this situation, P+ = {r1, r2, r5, r6}. This
candidate program does successfully produce the tuple t = scc(3, 1). In fact, because of the loop in
the underlying graph, there are infinitely many derivation trees which produce t . Note, however,
that three of the included rules, r1, r2 and r6, only produce elements of the intermediate predicate
inv. Therefore, all derivation trees which produce t must ultimately involve an occurrence of the
remaining rule r5.
The notion of co-provenance captures this idea of a rule being essential to the production of a

tuple. Formally, the co-provenance of a tuple t , coprov(t, P+) is the set of all rules which occur in
every derivation tree producing t :

coprov(t, P+) = {r ∈ P+ | ∀ derivation trees τ which produce t, r ∈ τ }. (6)

While prov(t, P+) refers to one non-deterministically chosen derivation tree, the quantity defined
above simultaneously refers to all derivation trees of t , thus making co-provenance a dual to the
traditional notion of provenance.

Furthermore, unlike prov(t, P+)whichwe defined in Section 4.1 as the result of a non-deterministic
computation, Equation 6 always uniquely defines the quantity coprov(t, P+). We discuss two patho-
logical cases to clarify the concept:

(1) Consider a tuple t ∈ P+(I ) which has two derivation trees, τ1 and τ2, where τ1 and τ2 do not
contain any rules in common. In this situation, no single rule is necessary for the production
of t , and therefore, coprov(t, P+) = ∅.

(2) Consider a tuple t < P+(I ) which is not derived by the candidate program P+. In this case,
there are no derivation trees which produce t , and therefore, each rule r vacuously satisfies
the condition of Equation 6. Therefore, coprov(t, P+) = P+.

Lastly, note that Equation 6 merely defines the concept and does not present an algorithm to
compute coprov(t, P+). We will present a technique to compute the quantity in the second part of
this section.
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4.3.1 Using coprov(t, P+) to define keep(t, P+, P−). Our main idea is that in the context where no
additional derivation trees are present, the rules present in coprov(t, P+) necessarily have to be
present to derive t . In particular, since r5 ∈ coprov(scc(3, 1), P+), for any candidate program P ′, if
P ′ ∩ P− = ∅ and r5 < P

′, then scc(3, 1) < P ′(I ).
We therefore define the constraint keep that protects the rules necessary for the production of

desirable tuples as follows,

keep(t, P+, P−) =
∧

r ∈P−
¬vr =⇒

∧
r ∈coprov(t ,P+)

vr . (7)

The keep constraint is an implication based on the given set P−. It permits us to remove further
rules from P+ that may otherwise produce undesirable tuples, i.e., rules in the set P+ \ coprov(t, P+).
and observe that the following lemma follows:

Lemma 4.5. Pick candidate programs P+ and P ′, and let P− = Pall \ P
+. For each tuple t , if P ′ does

not satisfy keep(t, P+, P−), then t < P ′(I ).

Proof. Assume otherwise, so that t ∈ P ′(I ).
If P ′ does not satisfy keep(t, P+), it has to be the case that it satisfies

∧
r ∈P− ¬vr , but does not

satisfy
∧

r ∈coprov(t ,P+)vr . We can therefore assert that P ′ ⊆ P , and also that there exists a rule r

such that r ∈ coprov(t, P+) such that r < P ′.
Now pick a derivation tree τ which derives t in P ′(I ), and observe that this derivation tree could

also have been realized in P+(I ). Since this tree τ does not contain r , it contradicts the assumption
that r ∈ coprov(t, P+). �

4.3.2 Computing coprov(t, P+). The central difficulty with computing coprov(t, P+) is that it ref-
erences all derivation trees of a particular conclusion, whereas traditional Datalog solvers are
best suited to discovering facts which hold on some derivation tree. Our insight is to compute the
complement of the co-provenance set. In other words, a rule r cannot belong to coprov(t, P+) iff
there is at least one derivation tree of t in which r does not occur.
For example, consider the two derivation trees of t = scc(3, 1) shown in Figure 6. Because

the rules r1 and r2 do not occur in τ1, we can conclude that r1, r2 < coprov(t, P
+). Similarly, since

r6 does not appear in τ2, we can conclude that r6 < coprov(t, P+). After maximally deriving all
“not-in-the-co-provenance” facts, we are allowed to conclude that coprov(t, P+) = {r5}.

Inspired by this reasoning, instead of the co-provenance, which has a universal quantifier in its
definition, we compute the following existential quantity:

coprov(t, P+) = {r ∈ P+ | ∃ a derivation tree τ s.t. r < t}. (8)

From this definition, it follows that coprov(t, P+) = P+ \ coprov(t, P+).
The key to computing coprov(t, P+) is to instrument every k-place relation R(v) of P+ with a

(k + 1)-place shadow relation R∃¬(v, r ) such that R∃¬(v, r ) is derivable iff R(v) is derivable without
using rule r . First, every rule r ′ of the form:

r ′ : Rh(vh) :- R1(v1),R2(v2), . . . ,Rk (vk ),

is instrumented with a shadow rule of the form:

R∃¬
h

(vh, r ) :- R
∃¬
1 (v1, r ),R

∃¬
2 (v2, r ), . . . ,R

∃¬
k

(vk , r ), r , r
′
.

Informally, if r , r ′ and if each of the hypotheses tuples, R1(v1), R2(v2), . . . , Rk (vk ), are derivable
without using rule r , then Rh(vh) is also derivable without using r . Second, since input tuples are
derivable without depending on any rules, each input relation is simply instrumented with a rule
of the form:

R∃¬(v, r ) :- R(v), r ∈ P+.
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edge(3, 1)

r6(1, 3)

inv(1, 3)

r5(3, 1)

scc(3, 1)

(a) τ1.

edge(1, 2)

r1(1, 2)

inv(1, 2) edge(2, 3)

r2(1, 2, 3)

inv(1, 3)

r5(3, 1)

scc(3, 1)

(b) τ2.

Fig. 6. Two derivation trees of t = scc(3, 1) from the fourth iteration of the example in Section 2. Here, the

candidate program, P+ = {r1, r2, r5, r6}. Notice that r1 and r2 do not appear in the first tree, τ1. Therefore,

r1, r2 < coprov(t, P
+). Similarly, rule r6 does not occur in τ2. Therefore, r6 < coprov(t, P

+).

It can then be shown that, for each relation R(v), R∃¬(v, r ) is derivable iff r ∈ coprov(t, P+). In our
example, with P+ = {r1, r2, r5, r6}, this results in the following instrumented program:

edge∃¬(x,y, r ) :- edge(x,y), r ∈ P+.

r ∃¬1 : inv∃¬(x,y, r ) :- edge∃¬(x,y, r ), r , r1.

r ∃¬2 : inv∃¬(x, z, r ) :- inv∃¬(x,y, r ), edge∃¬(y, z, r ), r , r2.

r ∃¬5 : scc∃¬(x,y, r ) :- inv∃¬(y, x, r ), r , r5.

r ∃¬6 : inv∃¬(x,y, r ) :- edge∃¬(y, x, r ), r , r6.

5 EMPIRICAL EVALUATION

We have implemented ProSynth in Python. It uses Soufflé [Jordan et al. 2016] as the underlying
Datalog solver and Z3 [de Moura and Bjørner 2008] as the SAT solver. In this section, we evaluate
ProSynth to answer the following questions:

Q1: How effective is ProSynth on synthesis tasks from different domains in terms of synthesis
time and learnability as compared to state-of-the-art approaches?

Q2: How variable is the running time of ProSynth across different runs and how does the
variability compare to that of existing approaches?

Q3: How does ProSynth scale with respect to the number and nature of candidate rules?
Q4: What is the impact of different provenance-based optimizations in ProSynth?

We performed our experiments on a server running Ubuntu 18.04 LTS over the Linux kernel version
4.15.0. The server was equipped with an 18 core, 36 thread Xeon Gold 6154 CPU running at 3 GHz
and with 394 GB of RAM. Note that ProSynth is single-threaded and is CPU-bound rather than
memory-bound on all benchmarks. Therefore, similar results should be obtained on contemporary
laptops and desktop workstations with similarly-clocked processors.
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Table 1. Benchmark characteristics.

Benchmark Brief description #R
el
at
io
ns

#R
ul
es

#I
nv
. P
re
ds
.

R
ec
ur
si
ve
?

Knowledge Discovery

abduce find grandparent of given parent [Muggleton 1995] 4 3 0

animals distinguishing animal classes [Muggleton 1995] 13 4 0

buildwall learn a stable wall strategy [Muggleton et al. 2015] 5 4 1 ✓

cliquer compute 2-paths and SCCs in directed graph 4 4 1

inflammation bladder inflammation diagnosis [Czerniak and Zarzycki 2003] 7 2 0

nearlyscc all-pairs reachability in directed graph in either direction 2 4 1

path all-pairs reachability in directed graph 2 2 0 ✓

rsg reverse-same-generation in family tree [Abiteboul et al. 1994] 4 2 0 ✓

samegen same generation in family tree [Abiteboul et al. 1994] 3 3 0 ✓

scc compute SCCs in directed graph 3 3 1 ✓

ship pairing products with customers by city and product name 4 1 0

small find ancestor in a family tree [Muggleton et al. 2015] 4 4 1

traffic crashes at an intersection 5 3 1

unionfind checking if elements in same set after union operations 4 4 0

Program Analysis

1-call-site 1-call-site pointer analysis for Java [Whaley and Lam 2004] 9 4 0 ✓

1-object 1-object-sensitive pointer analysis [Milanova et al. 2002] 11 4 0 ✓

1-object-type 1-type-1-object sensitive analysis [Smaragdakis et al. 2011] 13 5 0 ✓

1-type 1-type-sensitive pointer analysis [Smaragdakis et al. 2011] 12 4 0 ✓

2-call-site 2-call-site pointer analysis for Java [Whaley and Lam 2004] 9 4 0 ✓

andersen inclusion-based pointer analysis for C [Andersen 1994] 5 4 0 ✓

downcast downcast safety checker for Java [Si et al. 2018] 9 4 0

escape escape analysis for Java [Si et al. 2018] 10 6 0 ✓

modref mod-ref analysis for Java [Si et al. 2018] 13 10 0 ✓

polysite polymorphic call-site inference for Java [Si et al. 2018] 6 3 0

rvcheck return-value-checker in APISan [Yun et al. 2016] 5 5 4

Relational Queries

sql 1 ∼ 15 15 SQL queries [Wang et al. 2017] ≤ 7 ≤ 4 ≤ 3

5.1 Benchmark Suite

We collected 40 synthesis tasks from three different application domains: (a) knowledge discovery,
(b) program analysis, and (c) relational queries. Table 1 presents characteristics of these benchmarks,
including the number of input-output relations, the number of rules in the smallest desired program,
the number of invented predicates needed, and whether the desired program is recursive or not.

Knowledge discovery. These benchmarks comprise 14 tasks of synthesizing Datalog programs
frequently used in the artificial intelligence and database literature.

Program analysis. These benchmarks comprise 11 tasks of synthesizing static analysis algorithms
for imperative and object-oriented programs.

Relational queries. These benchmarks comprise 15 tasks from StackOverflow posts and textbook
examples. They involve synthesizing SQL queries that can be expressed in Datalog.
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5.2 Performance and Learnability Results

The central question we wish to investigate is whether ProSynth can effectively learn non-trivial
Datalog programs, especially in comparison to other state-of-the-art approaches, includingALPS [Si
et al. 2018] and Difflog [Si et al. 2019]. Previous work demonstrates that these two publicly
available tools out-perform prior approaches such as Metagol [Cropper and Muggleton 2015] and
Zaatar [Albarghouthi et al. 2017]. We present the results of this evaluation in Table 2. Across all
benchmarks, ProSynth never times out, takes less than 10 seconds on average to synthesize the
target program, and less than 1 second for 28 of them. In comparison, both ALPS and Difflog

run out of time on 6 and 3 benchmarks, respectively. Furthermore, ProSynth demonstrates faster
performance than both competing solvers in all but 5 of the tasks.
For example, consider the scc benchmark. ProSynth makes 81 calls to the Z3 solver, and

evaluates 844 different candidate solutions using Soufflé, and correctly synthesizes the target
program in 16 seconds. In comparison, ALPS evaluates 47,527 candidate programs, and Difflog

evaluates 4,008 candidate programs before reaching a solution.
Also, observe that ProSynth is significantly faster than both Difflog and ALPS on the program

analysis benchmarks and most benchmarks with invented predicates. This is because subtle interac-
tions between candidate rules make them uniformly harder than the remaining benchmarks in the
suite, so that both ALPS and Difflog take significant amounts of time. These results demonstrate
the effectiveness of provenance-guided constraints in rapidly reducing the size of the search space.
Finally, we note an interesting observation while running ProSynth on the 1-object-type

benchmark: the choice of meta-rules was insufficient to encode the target program, so that the
benchmark was actually unsynthesizable. Difflog was unable to recognize this contradiction and
timed out on the benchmark, while the committee of candidate programs maintained by ALPS

became empty after 257 seconds, thus correctly recognizing that the benchmarkwas unsynthesizable.
In contrast, ProSynth converges to an unsatisfiable synthesis constraint in less than one second.

Note that all three algorithms in Table 2—ProSynth, Difflog, and ALPS—are searching over the
same space of candidate programs. In addition to their synthesis algorithm, ALPS also introduced
the process of augmentation we discussed in Section 3.3. The meta-rules produced as a result of
this process can be further concretized into a set of candidate rules. This formed the input to both
Difflog and ProSynth.
Furthermore, the small number of candidate rules for some benchmarks (such as path, sql04

and sql13) is a result of maintaining this parity across all three tools. We also ran ProSynth on
versions of the benchmarks with a much larger set of candidate rules: we will discuss these results
in Figure 8 and Section 5.4.

5.3 Variance in Running Time

We repeatedly ran both ProSynth and Difflog on each benchmark program, and collected
running times and other statistics which we present in Figure 7. This figure demonstrates one of
our important observations, i.e., that in addition to the improvements in performance, ProSynth
also exhibits significantly smaller variance and much greater predictability in running times.
Furthermore, in the vast majority of benchmarks (37 of 40), themaximum running time of ProSynth
is faster than the median running time of Difflog, further substantiating our claims of improved
performance. Note that while ALPS is mostly deterministic, showing only minimal variance in
running times, its absolute performance is slower than both Difflog and ProSynth.
We point out the anomalous behavior of the sql10 and sql15 benchmarks, where ALPS and

Difflog outperform ProSynth. A close analysis of these benchmarks shows that ProSynth and
ALPS examine a similar number of programs. For sql10, ProSynth makes 635 calls to Z3 (in the
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Table 2. Metrics summarizing the performance of ProSynth and its comparison to state-of-the-art approaches

ALPS and Difflog. The first three columns indicate the number of candidate rules and the number of input

and output tuples provided as part of the training data. For both ProSynth and Difflog, the statistics

represent the median of 32 independent runs. All experiments were conducted with a timeout of 1 hour.

# Candidate

rules

# Tuples Running time (seconds) # Evaluated programs

Input Output ProSynth ALPS Difflog
ProSynth

ALPS Difflog
Z3 Soufflé

abduce 38 12 8 <1 3 timeout 6 6 3,023 359,068

animals 76 50 64 <1 40 1 3 3 43,631 3

buildwall 178 30 4 31 67 71 133 1,255 44,779 74

cliquer 93 4 20 1 timeout 3 34 34 timeout 28

inflammation 67 640 49 <1 3 3 17 17 2,327 8

nearlyscc 166 5 17 25 1 6 318 1,281 558 17

path 5 7 31 <1 <1 <1 1 1 6 1

rsg 67 17 11 <1 timeout 2 9 9 timeout 5

samegen 166 7 21 2 12 6 21 21 984 9

scc 166 10 25 16 56 2,822 81 844 47,527 4,008

ship 64 15 5 <1 timeout 1 3 3 timeout 1

small 38 8 19 <1 timeout 1 1 1 timeout 4

traffic 33 12 2 <1 timeout <1 6 6 timeout 4

unionfind 151 21 36 <1 timeout 2 1 1 timeout 1

1-call-site 96 28 4 3 104 20 19 165 105 36

1-object 41 40 13 1 350 14 8 70 350 27

1-object-type 12 48 6 <1 257 timeout 1 1 256 893,692

1-type 39 42 15 1 13 10 7 63 13 15

2-call-site 103 30 15 6 688 151 18 202 687 80

andersen 64 7 7 <1 27 2 6 6 53,005 5

downcast 359 89 175 23 1,622 342 51 500 181,463 75

escape 29 13 19 <1 6 2 8 8 4,802 71

modref 30 18 34 <1 2,816 4 4 4 1,375,527 34

polysite 325 97 27 7 84 114 52 52 29,463 68

rvcheck 67 74 2 27 195 1,228 342 3,313 72,952 78,415

sql01 26 21 2 <1 <1 1 6 6 17 3

sql02 12 3 1 <1 <1 <1 4 4 4 4

sql03 57 4 2 <1 <1 1 33 33 0 4

sql04 5 9 6 <1 <1 <1 3 3 13 3

sql05 9 12 5 <1 <1 <1 6 6 0 3

sql06 8 9 9 <1 <1 <1 3 3 32 3

sql07 39 5 5 <1 <1 1 15 15 0 1

sql08 91 6 2 4 1 5 82 296 0 52

sql09 40 6 1 <1 <1 2 14 60 7 15

sql10 688 10 2 248 44 184 636 2,781 504 189

sql11 58 30 2 7 1 22 236 501 936 1,540

sql12 22 36 7 <1 <1 2 12 40 109 25

sql13 7 17 7 <1 <1 <1 5 5 2 1

sql14 13 11 6 <1 56 <1 5 11 8 3

sql15 153 50 7 22 12 timeout 245 513 291 3,417

median case) while ALPS evaluates 778 candidate programs. Similarly, for sql15, ProSynth makes
245 calls to Z3 while ALPS evaluates 344 programs. ProSynth is implemented in Python and
repeatedly invokes Soufflé as an external process, which reloads its EDB via filesystem calls in each
iteration. In contrast, ALPS is implemented entirely in C++. This bottleneck will be eliminated by
using the new Python interface to Soufflé which is currently under development.
Another curious outlier in these experiments is the case of nearlyscc. Informally, the bench-

mark was chosen from an introductory programming assignment, where the target relation
nearlyscc(x,y) is derivable iff either path(x,y) is derivable or if path(y, x) is derivable. Notice
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(a) Distribution of normalized running times of Difflog.

(b) Distribution of normalized running times of ProSynth.

Fig. 7. Distribution of running times of Difflog and ProSynth across 32 runs for each benchmark. The

running times were normalized around the median running time of Difflog for each benchmark. ProSynth

exhibits much lower variability than Difflog in running times for a given benchmark. Also, in all but three

benchmarks, the maximum running time of ProSynth is lower than the median running time of Difflog.

then that in, in addition to path, it requires the additional two rules:

nearlyscc(x,y) :- path(x,y), and

nearlyscc(y, x) :- path(x,y).

This pair of rules interacts particularly well with the ALPS synthesis algorithm—where they form
initial members of the committee, and where all other members are quickly evicted—so that ALPS
significantly outperforms both Difflog and ProSynth on this specific benchmark.

5.4 Impact of Candidate Rules

To observe the impact of the candidate rule sets on synthesis times, we considered the exhaustive
rule enumeration process of Section 3.3. We focused on the scc and 1-object-1-type benchmarks
and generated all candidate rules with at most 3 literals in their bodies, and considered subsets of
them of varying sizes. We ran ProSynth multiple times on each subset and present the results in
Figure 8. Notice that the variance rises somewhat quickly with the increasing number of candidate
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Fig. 8. Performance of ProSynth scaling with number of candidate rules on the scc and 1-object-1-type

benchmarks. Each set of candidate rules was randomly selected from a large set of generated candidate rules,

and run 8 times with ProSynth.

rules, due to the larger search space. However, close inspection of the search logs reveals that the
number of CEGIS iterations rises more slowly, indicating the effectiveness of why- and why-not
provenance in extracting information and restricting the size of the search space. Finally, notice
that the median running time of ProSynth rises only modestly with the number of candidate
rules, demonstrating that adding extra candidate rules does not significantly impact the ability of
ProSynth to find a solution.

5.5 Impact of Optimizations

Our final experiment was to determine the impact of the optimizations on why-not provenance
from Section 4.2. For each benchmark, we considered the number of CEGIS iterations made by
ProSynth with prov

∆
(t, P−) and prov

S
(t, P−) respectively. We present the results for each of the

large benchmark problems (those requiring more than 10 seconds to synthesize) in Figure 9, and for
the remaining benchmarks in the Appendix. Observe that prov

∆
(t, P−) requires significantly fewer

iterations to converge, and therefore learns better overall from each failed candidate program.

6 RELATEDWORK

Our work on ProSynth follows a rich history of research in simplifying user interaction with
complex data processing systems. In this section, we provide a brief survey of this work and
categorize it into (a) research that aims to synthesize non-recursive table transformations such
as SQL queries, (b) work on inductive logic programming (ILP), and (c) work on the synthesis of
recursive logic programs. Furthermore, because of its central role in this paper, we also provide
a brief overview of research on query provenance in databases, where we focus on provenance
models and concrete implementations.

Synthesis of relational queries. Database researchers have long been interested in the challenge of
making relational queries easier to compose by non-expert end-users. Examples for this research
are the origins of SQL as the “Structured English Query Language” [Chamberlin and Boyce 1974],
and the approximately contemporaneous development of Query-by-Example by [Zloof 1975]. The
central challenge in systems which synthesize relational queries is to simultaneously determine both
the hierarchical skeleton of the target query and the concrete predicates and constants inhabiting
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Fig. 9. Distribution of running times of ProSynth with (9a) and without (9b) delta-debugging inspired prov

minimization. We show the distribution over 32 runs on benchmarks that take time greater than 10 seconds.

See Table 3 in Appendix A for results for the remaining benchmarks.

operators such as select and join. One prominent recent approach is to view the candidate query
skeletons as partial programs. For example, Morpheus [Wang et al. 2017] encodes partial programs
as over-approximate constraints in an SMT solver. Another example is Scythe [Feng et al. 2017] that
combines indistinguishability-based enumeration and prunes candidates using partial evaluation.
Instead of analyzing examples of input-output data to synthesize the query, [Wang et al. 2018]
applies symbolic provenance analysis to the query to synthesize input tables which satisfy some
user-specified property, such as resulting in ill-formed output tuples or witnessing the inequivalence
of two queries.

The problems solved by these papers are orthogonal to ours. First, the rules of a Datalog program
interact in highly non-trivial ways.We noticed this in the example of Section 2, where both candidate
programs P1 = {r3, r6, r7} and P2 = {r1, r2, r3} are valid solutions, but P1∪P2 = {r1, r2, r3, r6, r7} is not
a solution. The central insight of our paper is to identify these composition-induced dependencies
among rules and use them to guide the candidate search. Second, we assume that all constants
appearing in the program are uninterpreted and that the only operation allowed between them is
the implicit test for equality, x = y, across bound variables with the same name. However, this is
insufficient in many practical situations, which require predicates (such as x > 100), aggregations
(such as min and sum) and group-by operations. The efficient synthesis of these predicates is the
main contribution of papers including Morpheus and Scythe. Hence, combining these approaches,
i.e., provenance-guided skeleton synthesis with rich data types, including functions, predicates and
aggregation, is an essential direction of future work.

Inductive Logic Programming. While ProSynth borrows some ideas from the field of inductive
logic programming (ILP) [Raedt 2008], there are several key differences. First, ILP techniques usually
learn relations, often probabilistic ones [Raedt and Kersting 2008], from large amounts of mined
data, e.g. biological data [Muggleton 1999]. In contrast, ProSynth and other Datalog synthesis
techniques infer a program from a small representative set of examples. Second, ILP techniques
have traditionally not been well suited for the synthesis of recursive programs. In [Flener and
Yilmaz 1999], Flener and Yilmaz survey techniques for recursive program synthesis using ILP.
More recently, [Muggleton et al. 2015] present a recursive synthesis approach, based on executing
meta-rules with an instrumented Prolog engine. However, a fundamental problemwith synthesizing
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Prolog programs is ensuring program termination. In their system, termination is achieved by
relying on extensive user annotations in the form of lexicographic orders and other priority
sequences on relations. Third, we employ a complete search strategy, while ILP techniques may fail
to find a program even if one exists.

Recursive Datalog Synthesis. The problem of synthesizing recursive Datalog programs has been
explored by some previous approaches. Zaatar [Albarghouthi et al. 2017] uses a constraint-solving
algorithm, encoding SMT constraints that describe the output of candidate Datalog programs.
However, Zaatar does not exploit the provenance information of output tuples, and ProSynth

gains an advantage by utilizing provenance. Difflog [Si et al. 2019] employs continuous opti-
mization techniques to synthesize Datalog programs. Using these techniques, Difflog can handle
noise better than discrete approaches and is also able to synthesize approximate solutions for
undecidable problems. ALPS [Si et al. 2018] is a syntax-guided approach for Datalog synthesis,
using refinement techniques on the syntax of Datalog programs to generate a program. Zaatar
and ALPS sit at opposite extremes of the spectrum of constraint-solving and enumerative-search
techniques, respectively, which hinders their scalability. In contrast, ProSynth employs a hybrid
of these two kinds of techniques in the CEGIS framework. Lastly, as our evaluation demonstrates,
Difflog suffers from significantly higher variability in synthesis time compared to ProSynth.

Query Provenance. The concept of query provenance emerged from convergent attempts to debug
database queries [Chiticariu and Tan 2006], to assess authority or uncertainty [Buneman et al. 2001;
Green et al. 2007b], and to compute probabilities associated with individual tuples [Sarma et al.
2008]. A unified account of the concept was developed by [Green et al. 2007a], who observed that
provenance has the mathematical structure of a semiring, and readily follows from replacing the
Boolean operations of classical query evaluation with the operations of a different suitable data
structure. We refer the reader to [Cheney et al. 2009] for a survey of the area.
Many previous approaches have explored the problem of synthesizing recursive Datalog pro-

grams. [Deutch et al. 2015, 2014; Köhler et al. 2012; Lee et al. 2019]. However, these techniques
typically store the full provenance object during query evaluation. For example, [Köhler et al. 2012]
stores the computation graph as an auxiliary relation during the evaluation, which may be many
times larger than the output itself. [Deutch et al. 2015] and [Lee et al. 2019] reduce the impact of this
storage by only storing information relevant to a particular query, determined even before query
compilation. The weakness of these approaches is that the program needs to be re-evaluated for
each new provenance query, and is therefore unsuitable in settings such as ours, where we rapidly
seek the provenance of several different tuples. Therefore, the method recently implemented in
Soufflé [Zhao et al. 2019], which provides minimal evaluation-time overhead, but requires a second
pass for provenance reconstruction, is most suitable for our purposes.

In contrast to the sophisticated solutions available for why provenance, the theoretical challenges
associated with why not provenance have limited the scope of practical implementations. [Lee
et al. 2019] present an approach for computing the why not provenance for Datalog programs by
enumerating all potential derivations of a tuple and showing the failure of each of them. While this
approach is suitable for a human debugging a Datalog program, the large search space limits its
practicality for use in automated systems such as ours. Thus, ProSynth borrows ideas from the
area of delta-debugging [Zeller 1999] as a practical compromise to detect a small set of excluded
rules which cause the non-production of a particular tuple.

7 CONCLUSION

We proposed a new approach to synthesize Datalog programs from input-output specifications.
Our primary insight is to leverage query provenance to scale the CEGIS procedure in the setting
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wherein a SAT solver guesses the candidate Datalog program and a Datalog solver checks whether
it meets the desired specification. We proposed novel algorithms to compute “why” and “why not”
provenance information from a Datalog solver to efficiently learn the constraints for a SAT solver.
We demonstrated the effectiveness of our approach in a tool called ProSynth on a variety of
synthesis tasks. ProSynth is able to synthesize more programs than state-of-the-art approaches
and runs an order of magnitude faster, often in under a second. Our reference implementation and
experimental setup is publicly available at https://github.com/petablox/popl2020-artifact.
Our work points to several exciting future directions towards the synthesis of rule-based pro-

grams. First, our approach offers flexibility to support various extensions of Datalog, including as
negation, aggregation and value construction. Each of these features requires additional syntactic
constraints to be enforced on candidate programs, notably stratification in order to guarantee
termination. Such constraints can be supported by replacing the SAT solver in our approach with
an SMT solver. Another promising direction concerns the ability to handle noise in input-output
specifications. This ability could be supported by relaxing the hard constraints generated in our
approach and leveraging solvers for optimization extensions of SAT and SMT, such as MaxSAT
and MaxSMT. We could also further extend the synthesis problem, for example, by requiring the
smallest consistent program or the program with lowest computational complexity. Lastly, all
existing approaches rely on template rules, which offer a syntactic scaffolding to guide synthesis.
We plan to explore ways to relax the need for template rules upfront, for instance, by generating
them on demand during the synthesis process.
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