David Zhao

d-z@outlook.com | Sydney, Australia

Compiler engineer with years of experience in working with large systems, along with programming languages and
databases research. Sound understanding of high-level compiler systems and logic programming techniques from
experiences working on Soufflé and Rel.

Education

University of Sydney (PhD, 2023)

* PhD in Computer Science. Supervisor: Prof. Bernhard Scholz

* Thesis Title: “Provenance, Incremental Evaluation, and Debugging in Datalog”

University of Sydney (2018)

¢ Bachelor of Science (Advanced Mathematics) (Honours)
* Honours Class I and University Medal

* Thesis Title: “Large-Scale Provenance for Soufflé”, Supervisor: Prof. Bernhard Scholz

Academic Achievements and Awards

* Allan Bromley Prize (2018). For achieving the highest mark across Honours Theses in Computer Science

* G.S. Caird Scholarship (2015). For achieving the highest mark in second year Computer Science

Work Experience

Relational Al May 2022 - Current
Compiler Engineer

* Demonstrates strong teamwork and communication within the language team to design and implement new
language features, fix bugs, and improve robustness of the codebase.

* Communicates and works across teams to understand requirements for various other parts of the system,
incorporating these into the designs and implementations.

* Communicates with users of Rel to understand important feature requirements for clients, working to plan
and design such features.

RelationalAl March 2021 - July 2021
Software Engineer/Research Intern (Language team)

* Integrated a worst-case optimal join in the Datalog-based type inference and cleaned up legacy type inference
code, leading to performance improvements of up to 80x.

* Implemented additions to the Rel standard library, including an algebraic constraints library and various
statistical summary functions.

* Improved error reporting in the compiler and other bug fixes.



Oracle Labs December 2017 - April 2018
Research Intern

* Research project to detect malware embedded in PDF documents using abstract interpretation techniques.

* Worked on PDF parsing tools to extract JavaScript embedded in PDF documents.

* Implemented abstractions to enable abstract interpretation for JavaScript features in PDFs, including form
handling libraries.

* Results demonstrated improvements in detection accuracy with minimal false negatives, and this was pub-
lished in the PLAS 2019 workshop.

Optiver November 2016 - March 2017
Software Development Intern

* Created a tool to visualise and analyse performance bottlenecks in the trading pipeline.

* Worked on a tool to detect certain trading patterns which could be exploited to maximise trading effectiveness.

* Analyses led to improvements in Optiver’s trading patterns, improving the success rate of trades.

University of Sydney July 2016 - December 2020
Academic Tutor

* Taught undergraduate courses, including INFO1103 (Introduction to Programming), COMP2022 (Formal Lan-
guages and Logic), COMP3109 (Programming Languages and Paradigms), COMP3308 (Introduction to Arti-
ficial Intelligence), and COMP5703 (IT Capstone Project)

Research Interests

Provenance and Debugging for Datalog. A new approach for debugging Datalog programs by utilizing prove-
nance information. Developed a novel hybrid scheme to efficiently encode and query provenance information for
Datalog programs, interactively producing proof trees for debugging use cases. Performance is shown to have
minimal overhead for Datalog evaluation, while being more generalisable compared to previous approaches. Our
provenance method was integrated into the Soufflé Datalog engine.

Furthermore, provenance has been combined with incremental evaluation to provide efficient delta debugging
to localize and repair input faults for Datalog programs where an unexpected output is introduced during an
incremental update.

Incremental Evaluation for Datalog. A new approach for the efficient incremental evaluation of Datalog pro-
grams, allowing small changes to input data to be processed effectively without requiring a full re-evaluation of
the Datalog program. Proposed a scheme to efficiently encode auxiliary information necessary for the incremental
processing of Datalog programs. A working prototype of incremental evaluation was implemented in the Soufflé
Datalog engine.

Synthesis of Datalog Programs. A SAT-solving based approach for automatically synthesizing a Datalog program
given an input set and an output set. Utilizes provenance-based debugging information to generate constraints
which minimize the search space for finding Datalog rules. Demonstrated improved performance compared to ex-
isting approaches.

Other Research Experience

Genetic Analysis of Rust Fungus. Bioinformatics project building a pipeline for gene assembly and analysis for
oat stem rust, a newly sequenced species of rust fungus. Analysed and compared the new species with results for
previously analysed species, providing the groundwork for future research.



Publications

* Zhao, D., Suboti¢, P., Raghothaman, M., and Scholz, B. (2023). Automatic Rollback Suggestions for Incremen-
tal Datalog Evaluation. In Practical Aspects of Declarative Languages (PADL). Springer, Cham. |doi:10.1007/978-
3-031-24841-2_19

* Arch, S., Hu, X., Zhao, D., Suboti¢, P, Scholz, B. (2022, September). Building a Join Optimizer for Soufflé.
In Logic-Based Program Synthesis and Transformation (LOPSTR). Springer, Cham. |d0i:10.1007/978-3-031-
16767-6.5

* Hu, X., Karp, J., Zhao, D., Zreika, A., Wu, X., and Scholz, B. (2021, October). The Choice Construct in
the Soufflé Language. In Asian Symposium on Programming Languages and Systems (APLAS) (pp. 163-181).
Springer, Cham. doi:10.1007/978-3-030-89051-3_10

* Zhao, D., Suboti¢, P., Raghothaman, M., and Scholz, B. (2021, September). Towards Elastic Incremental-
ization for Datalog. In 23rd International Symposium on Principles and Practice of Declarative Programming
(PPDP) (pp. 1-16). doi:10.1145/3479394.3479415

* Hu, X., Zhao, D., Jordan, H. and Scholz, B. (2021, June). An efficient interpreter for Datalog by de-specializing
relations. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI) (pp. 681-695). doi:10.1145/3410297

* Zhao, D., Suboti¢, P. and Scholz, B. (2020). Debugging Large-scale Datalog: A Scalable Provenance Evaluation
Strategy. In ACM Transactions on Programming Languages and Systems (TOPLAS), 42(2), (pp. 1-35).
doi:10.1145/3379446

» Jordan, H., Suboti¢, P., Zhao, D. and Scholz, B. (2020). Specializing parallel data structures for Datalog. In
Concurrency and Computation: Practice and Experience, (p.e5643).|d0i:10.1002/cpe.5643

* Raghothaman, M., Mendelson, J., Zhao, D., Naik, M. and Scholz, B. (2019). Provenance-guided synthesis of
Datalog programs. In Proceedings of the ACM on Programming Languages, 4 (POPL), (pp. 1-27).
doi:10.1145/3371130

* Jordan, A., Gauthier, F., Hassanshahi, B. and Zhao, D. (2019, November). Unacceptable Behavior: Robust
PDF Malware Detection Using Abstract Interpretation. In Proceedings of the 14th ACM SIGSAC Workshop on
Programming Languages and Analysis for Security (pp. 19-30). doi:10.1145/3338504.3357341

* Nappa, P., Zhao, D., Suboti¢, P. and Scholz, B. (2019, September). Fast Parallel Equivalence Relations in a
Datalog Compiler. In 2019 28th International Conference on Parallel Architectures and Compilation Techniques
(PACT) (pp. 82-96). IEEE. |d0i:10.1109/PACT.2019.00015

* Jordan, H., Suboti¢, P., Zhao, D. and Scholz, B. (2019, February). A specialized B-tree for concurrent datalog
evaluation. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’19). ACM, New York, NY, USA. doi:10.1145/3293883.3295719

* Jordan, H., Suboti¢, P., Zhao, D. and Scholz, B. (2019, February). Brie: A Specialized Trie for Concurrent Dat-
alog. In Proceedings of the 10th International Workshop on Programming Models and Applications for Multicores
and Manycores (pp. 31-40). ACM. |d0i:10.1145/3303084.3309490

Presentations

* Zhao, D., 2019. Incremental Datalog Prototype in Soufflé. Presented at The Second Workshop on Incremental
Computing (IC).


https://doi.org/10.1007/978-3-031-24841-2_19
https://doi.org/10.1007/978-3-031-24841-2_19
https://doi.org/10.1007/978-3-031-16767-6_5
https://doi.org/10.1007/978-3-031-16767-6_5
https://doi.org/10.1007/978-3-030-89051-3_10
https://doi.org/10.1145/3479394.3479415
https://doi.org/10.1145/3410297
https://doi.org/10.1145/3379446
https://doi.org/10.1002/cpe.5643
https://doi.org/10.1145/3371130
https://doi.org/10.1145/3338504.3357341
https://doi.org/10.1109/PACT.2019.00015
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1145/3303084.3309490

